29 research outputs found

    The effect of aging-associated impaired mitochondrial status on kainate-evoked hippocampal gamma oscillations.

    Get PDF
    Oscillations in hippocampal neuronal networks in the gamma frequency band have been implicated in various cognitive tasks and we showed previously that aging reduces the power of such oscillations. Here, using submerged hippocampal slices allowing simultaneous electrophysiological recordings and imaging, we studied the correlation between the kainate-evoked gamma oscillation and mitochondrial activity, as monitored by rhodamine 123. We show that the initiation of kainate-evoked gamma oscillations induces mitochondrial depolarization, indicating a metabolic response. Aging had an opposite effect on these parameters: while depressing the gamma oscillation strength, it increases mitochondrial depolarization. Also, in the aged neurons, kainate induced significantly larger Ca(2+) signals. In younger slices, acute mitochondrial depolarization induced by low concentrations of mitochondrial protonophores strongly, but reversibly, inhibits gamma oscillations. These data indicating that the complex network activity required by the maintenance of gamma activity is susceptible to changes and modulations in mitochondrial status

    Piston-driven numerical wave tank based on WENO solver of well-balanced shallow water equations

    Get PDF
    A numerical wave tank equipped with a piston type wave-maker is presented for long-duration simulations of long waves in shallow water. Both wave maker and tank are modelled using the nonlinear shallow water equations, with motions of the numerical piston paddle accomplished via a linear mapping technique. Three approaches are used to increase computational efficiency and accuracy. First, the model satisfies the exact conservation property (C-property), a stepping stone towards properly balancing each term in the governing equation. Second, a high-order weighted essentially non-oscillatory (WENO) method is used to reduce accumulation of truncation error. Third, a cut-off algorithm is implemented to handle contaminated digits arising from round-off error. If not treated, such errors could prevent a numerical scheme from satisfying the exact C-property in long-duration simulations. Extensive numerical tests are performed to examine the well-balanced property, high order accuracy, and shock-capturing ability of the present scheme. Correct implementation of the wave paddle generator is verified by comparing numerical predictions against analytical solutions of sinusoidal, solitary, and cnoidal waves. In all cases, the model gives satisfactory results for small-amplitude, low frequency waves. Error analysis is used to investigate model limitations and derive a user criterion for long wave generation by the model

    Temperature- and concentration-dependence of kainate-induced gamma oscillation in rat hippocampal slices under submerged condition

    No full text
    AIM: Fast neuronal network oscillation at the γ frequency band (γ oscillation: 30–80 Hz) has been studied extensively in hippocampal slices under interface recording condition. The aim of this study is to establish a method for recording γ oscillation in submerged hippocampal slices that allows simultaneously monitoring γ oscillation and the oscillation-related intracellular events, such as intracellular Ca(2+) concentration or mitochondrial membrane potentials. METHODS: Horizontal hippocampal slices (thickness: 300 μm) of adult rats were prepared and placed in a submerged or an interface chamber. Extracellular field recordings were made in the CA3c pyramidal layer of the slices. Kainate, an AMPA/kainate receptor agonist, was applied via perfusion. Data analysis was performed off-line. RESULTS: Addition of kainate (25–1000 nmol/L) induced γ oscillation in both the submerged and interface slices. Kainate increased the γ power in a concentration-dependent manner, but the duration of steady state oscillation was reduced at higher concentrations of kainate. Long-lasting γ oscillation was maintained at the concentrations of 100–300 nmol/L. Under submerged condition, γ oscillation was temperature-dependent, with the maximum power achieved at 29 °C. The induction of γ oscillation under submerged condition also required a fast rate of perfusion (5–7 mL/min) and showed a fast dynamic during development and after the washout. CONCLUSION: The kainite-induced γ oscillation recorded in submerged rat hippocampal slices is useful for studying the intracellular events related to neuronal network activities and may represent a model to reveal the mechanisms underlying the normal neuronal synchronizations and diseased conditions

    The Economical Evaluation in the Design of Main Drainage Systems

    No full text

    Multi-Layer Finite Volume Solution of Wind Induced Basin Flow

    No full text
    corecore