46 research outputs found

    Histone Methylation by NUE, a Novel Nuclear Effector of the Intracellular Pathogen Chlamydia trachomatis

    Get PDF
    Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE). Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation). Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

    Get PDF
    Aedes aegypti, the primary vector mosquito of dengue virus, typically lives near or inside human dwellings, and feeds preferentially on humans. The control of this mosquito vector remains the most important dengue prevention method. The use of chemicals at levels toxic to mosquitoes is currently the only confirmed effective adult vector control strategy with interventions usually applied following epidemic onset. However, research indicates that sub-lethal chemical approaches to prevent human-vector contact at the house level exist: contact irritancy and spatial repellency. The optimum efficacy of an intervention based on contact irritant actions of chemicals will, however, require full knowledge of variables that will influence vector resting behavior and thereby chemical uptake from treated sources. Here we characterize the resting patterns of female Ae. aegypti on two material types at various dark:light surface area coverage ratios and contrast configurations under chemical-free and treated conditions using a laboratory behavioral assay. Change in resting behavior between baseline and treatment conditions was quantified to determine potential negative effects of untreated surfaces (“safe sites”) when irritant responses are elicited. We show that treatment of preferred resting sites with known irritant compounds do not stimulate mosquitoes to move to safe sites after making contact with treated surfaces

    A Set of 100 Chloroplast DNA Primer Pairs to Study Population Genetics and Phylogeny in Monocotyledons

    Get PDF
    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we developed a new set of 100 primer pairs optimized for amplification in Monocotyledons. Primer pairs amplify coding (exon) and non-coding regions (intron and intergenic spacer). They span the different chloroplast regions: 72 are located in the LSC, 13 in the Small Single Copy (SSC) and 15 in the Inverted Repeat region (IR). Amplification and sequencing were tested in 13 species of Monocotyledons: Dioscorea abyssinica, D. praehensilis, D. rotundata, D. dumetorum, D. bulbifera, Trichopus sempervirens (Dioscoreaceae), Phoenix canariensis, P. dactylifera, Astrocaryum scopatum, A. murumuru, Ceroxylon echinulatum (Arecaceae), Digitaria excilis and Pennisetum glaucum (Poaceae). The diversity found in Dioscorea, Digitaria and Pennisetum mainly corresponded to Single Nucleotide Polymorphism (SNP) while the diversity found in Arecaceae also comprises Variable Number Tandem Repeat (VNTR). We observed that the most variable loci (rps15-ycf1, rpl32-ccsA, ndhF-rpl32, ndhG-ndhI and ccsA) are located in the SSC. Through the analysis of the genetic structure of a wild-cultivated species complex in Dioscorea, we demonstrated that this new set of primers is of great interest for population genetics and we anticipate that it will also be useful for phylogeny and bar-coding studies
    corecore