3,589 research outputs found

    General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback

    Full text link
    In this paper we consider a viscoelastic wave equation with a time-varying delay term, the coefficient of which is not necessarily positive. By introducing suitable energy and Lyapunov functionals, under suitable assumptions, we establish a general energy decay result from which the exponential and polynomial types of decay are only special cases.Comment: 11 page

    Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox

    Get PDF
    We formally link the concept of steering (a concept created by Schrodinger but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)] and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variables observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality, entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added journal-ref and DO

    Uniform semiclassical approximation in quantum statistical mechanics

    Full text link
    We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.Comment: 5 pages, 1 figure, Latex. Contribution to the Proceedings of the XXI Brazilian National Meeting on Particles and Fields (Sao Lourenco, October 23-27, 2000

    Multipartite entanglement percolation

    Full text link
    We present percolation strategies based on multipartite measurements to propagate entanglement in quantum networks. We consider networks spanned on regular lattices whose bonds correspond to pure but non-maximally entangled pairs of qubits, with any quantum operation allowed at the nodes. Despite significant effort in the past, improvements over naive (classical) percolation strategies have been found for only few lattices, often with restrictions on the initial amount of entanglement in the bonds. In contrast, multipartite entanglement percolation outperform the classical percolation protocols, as well as all previously known quantum ones, over the entire range of initial entanglement and for every lattice that we considered.Comment: revtex4, 4 page

    Tomographic Characterization of Three-Qubit Pure States with Only Two-Qubit Detectors

    Full text link
    A tomographic process for three-qubit pure states using only pairwise detections is presented.Comment: 3 pages; revtex4; v2: the focus on tomography was emphasized and the experimental procedure detailed; v3: the text was improved in clarity, some mistakes were correcte

    Criteria for generalized macroscopic and mesoscopic quantum coherence

    Get PDF
    We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of eigenstates of an observable, and develop some signatures for their existence. We define the extent, or size SS of a superposition, with respect to an observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that superposition. Such superpositions are referred to as generalized SS-scopic superpositions to distinguish them from the extreme superpositions that superpose only the two states that have a difference SS in their prediction for the observable. We also consider generalized SS-scopic superpositions of coherent states. We explore the constraints that are placed on the statistics if we suppose a system to be described by mixtures of superpositions that are restricted in size. In this way we arrive at experimental criteria that are sufficient to deduce the existence of a generalized SS-scopic superposition. The signatures developed are useful where one is able to demonstrate a degree of squeezing. We also discuss how the signatures enable a new type of Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.

    Are all maximally entangled states pure?

    Get PDF
    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement, exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of monogamy of entanglement: we establish the \textit{polygamy of entanglement}, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.Comment: 5 pages, 1 figure. Proof of theorem 3 corrected e new results concerning the asymptotic regime include
    corecore