3,589 research outputs found
General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback
In this paper we consider a viscoelastic wave equation with a time-varying
delay term, the coefficient of which is not necessarily positive. By
introducing suitable energy and Lyapunov functionals, under suitable
assumptions, we establish a general energy decay result from which the
exponential and polynomial types of decay are only special cases.Comment: 11 page
Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox
We formally link the concept of steering (a concept created by Schrodinger
but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett.
98, 140402 (2007)] and the criteria for demonstrations of
Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913
(1989)]. We develop a general theory of experimental EPR-steering criteria,
derive a number of criteria applicable to discrete as well as
continuous-variables observables, and study their efficacy in detecting that
form of nonlocality in some classes of quantum states. We show that previous
versions of EPR-type criteria can be rederived within this formalism, thus
unifying these efforts from a modern quantum-information perspective and
clarifying their conceptual and formal origin. The theory follows in close
analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality,
entanglement), and because it is a hybrid of those two, it may lead to insights
into the relationship between the different forms of nonlocality and the
criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added
journal-ref and DO
Uniform semiclassical approximation in quantum statistical mechanics
We present a simple method to deal with caustics in the semiclassical
approximation to the partition function of a one-dimensional quantum system.
The procedure, which makes use of complex trajectories, is applied to the
quartic double-well potential.Comment: 5 pages, 1 figure, Latex. Contribution to the Proceedings of the XXI
Brazilian National Meeting on Particles and Fields (Sao Lourenco, October
23-27, 2000
Multipartite entanglement percolation
We present percolation strategies based on multipartite measurements to
propagate entanglement in quantum networks. We consider networks spanned on
regular lattices whose bonds correspond to pure but non-maximally entangled
pairs of qubits, with any quantum operation allowed at the nodes. Despite
significant effort in the past, improvements over naive (classical) percolation
strategies have been found for only few lattices, often with restrictions on
the initial amount of entanglement in the bonds. In contrast, multipartite
entanglement percolation outperform the classical percolation protocols, as
well as all previously known quantum ones, over the entire range of initial
entanglement and for every lattice that we considered.Comment: revtex4, 4 page
Tomographic Characterization of Three-Qubit Pure States with Only Two-Qubit Detectors
A tomographic process for three-qubit pure states using only pairwise
detections is presented.Comment: 3 pages; revtex4; v2: the focus on tomography was emphasized and the
experimental procedure detailed; v3: the text was improved in clarity, some
mistakes were correcte
Criteria for generalized macroscopic and mesoscopic quantum coherence
We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of
eigenstates of an observable, and develop some signatures for their existence.
We define the extent, or size of a superposition, with respect to an
observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that
superposition. Such superpositions are referred to as generalized -scopic
superpositions to distinguish them from the extreme superpositions that
superpose only the two states that have a difference in their prediction
for the observable. We also consider generalized -scopic superpositions of
coherent states. We explore the constraints that are placed on the statistics
if we suppose a system to be described by mixtures of superpositions that are
restricted in size. In this way we arrive at experimental criteria that are
sufficient to deduce the existence of a generalized -scopic superposition.
The signatures developed are useful where one is able to demonstrate a degree
of squeezing. We also discuss how the signatures enable a new type of
Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
Are all maximally entangled states pure?
We study if all maximally entangled states are pure through several
entanglement monotones. In the bipartite case, we find that the same conditions
which lead to the uniqueness of the entropy of entanglement as a measure of
entanglement, exclude the existence of maximally mixed entangled states. In the
multipartite scenario, our conclusions allow us to generalize the idea of
monogamy of entanglement: we establish the \textit{polygamy of entanglement},
expressing that if a general state is maximally entangled with respect to some
kind of multipartite entanglement, then it is necessarily factorized of any
other system.Comment: 5 pages, 1 figure. Proof of theorem 3 corrected e new results
concerning the asymptotic regime include
- …