4 research outputs found

    Determination of rutin and narcissin in marigold extract and topical formulations by liquid chromatography: applicability in skin penetration studies

    Get PDF
    A chromatographic technique for determination of rutin and narcissin in marigold extract and topical formulations was developed and validated. The method shows linearity over the concentration range of 0.2 - 6.0 μg/mL of rutin (r = 0.9986) and 0.8 - 12.0 μg/mL of narcissin (r = 0.9951). The values obtained for precision and accuracy are in agreement with ICH guidelines. Both the formulation excipients and the porcine ear skin samples did not interfere with the flavonoids determination. The recovery of rutin and narcissin in skin samples added with marigold extract was 81.41% and 83.35%, respectively, which demonstrate the applicability of this method to perform skin penetration studies.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion

    No full text
    Background and purpose: Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Methods: Firstly, the physico-chemical composition of marigold extract(ME) (hydroalcoholic extract)was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. Results and conclusions: The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2 mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin. (C) 2009 Elsevier Ireland Ltd. All rights reserved.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP

    Efficacy of Marigold Extract-Loaded Formulations Against UV-induced Oxidative Stress

    No full text
    The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV) B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 mu g/cm(2) of narcissin and as 0.07 mu g/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:2182-2193, 2011Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brazil)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq, Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Brazil
    corecore