5,324 research outputs found
Doped planar quantum antiferromagnets with striped phases
We study the properties of the striped phases that have been proposed for the
doped cuprate planar quantum antiferromagnets. We invoke an effective,
spatially anisotropic, non-linear sigma model in two space dimensions. Our
theoretical predictions are in {\it quantitative} agreement with recent
experiments. We focus on (i) the staggered magnetization at and (ii) the
N\'eel temperature, as functions of doping; these have been measured recently
in La Sr Cu O with . Good agreement
with experiment is obtained using parameters determined previously and
independently for this system. These results support the proposal that the low
doping (antiferromagnetic) phase of the cuprates has a striped configuration.Comment: 4 pages, RevteX, 2 figures, new references added, minor changes in
wording and corrections of some formula
Comment on "BCS superconductivity of Dirac fermions in graphene layers"
Comment on "BCS superconductivity of Dirac fermions in graphene layers" by N.
B. Kopnin and E. B. Sonin [arXiv:0803.3772; Phys. Rev. Lett. 100, 246808
(2008)].Comment: 1.1 page
Atomically thin dilute magnetism in Co-doped phosphorene
Two-dimensional dilute magnetic semiconductors can provide fundamental
insights in the very nature of magnetic orders and their manipulation through
electron and hole doping. Despite the fundamental physics, due to the large
charge density control capability in these materials, they can be extremely
important in spintronics applications such as spin valve and spin-based
transistors. In this article, we studied a two-dimensional dilute magnetic
semiconductors consisting of phosphorene monolayer doped with cobalt atoms in
substitutional and interstitial defects. We show that these defects can be
stabilized and are electrically active. Furthermore, by including holes or
electrons by a potential gate, the exchange interaction and magnetic order can
be engineered, and may even induce a ferromagnetic-to-antiferromagnetic phase
transition in p-doped phosphorene.Comment: 7 pages, 4 colorful figure
Luttinger Stripes in Antiferromagnets
We propose a model for the physics of stripes in antiferromagnets in which
the stripes are described by Luttinger liquids hybridized with
antiferromagnetic domains. Using bosonization techniques we study the model in
the limit where the magnetic correlation length is larger than the inter-stripe
distance and propose an explanation for the commensurate-incommensurate phase
transition seen in neutron scattering in the underdoped regime of La_{2-x} Sr_x
Cu O_4. The explanation is based on a phase to anti-phase domain transition in
the spin configuration which is associated with the transverse motion of the
stripes. Using a non-linear sigma model to describe the antiferromagnetic
regions we conjecture the crystalization of the stripes in the magnetically
ordered phase.Comment: 9 pages, Revtex, Epsf, 4 figures. To appear in the Proceedings of the
Euroconference on "Correlations in unconventional quantum liquids" in
Zeitschrift f\"ur Physik B - Condensed Matter (dedicated to the memory of Sir
Rudolph Peierls
- …
