24,021 research outputs found

    Distribution of epicenters in the Olami-Feder-Christensen model

    Full text link
    We show that the well established Olami-Feder-Christensen (OFC) model for the dynamics of earthquakes is able to reproduce a new striking property of real earthquake data. Recently, it has been pointed out by Abe and Suzuki that the epicenters of earthquakes could be connected in order to generate a graph, with properties of a scale-free network of the Barabasi-Albert type. However, only the non conservative version of the Olami-Feder-Christensen model is able to reproduce this behavior. The conservative version, instead, behaves like a random graph. Besides indicating the robustness of the model to describe earthquake dynamics, those findings reinforce that conservative and non conservative versions of the OFC model are qualitatively different. Also, we propose a completely new dynamical mechanism that, even without an explicit rule of preferential attachment, generates a free scale network. The preferential attachment is in this case a ``by-product'' of the long term correlations associated with the self-organized critical state. The detailed study of the properties of this network can reveal new aspects of the dynamics of the OFC model, contributing to the understanding of self-organized criticality in non conserving models.Comment: 7 pages, 7 figure

    Damped and sub-damped Lyman-α absorbers in z > 4 QSOs

    Get PDF
    We present the results of a survey of damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of ΔX = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that Ω_(DLA,HI) decreases at z > 3.5. The overall cosmological evolution of Ω_(HI) shows a peak around this redshift. The H I column density distribution for log N(H I) ≥ 20.3 is fitted, consistent with previous surveys, with a single power-law of index α ~ −1.8 ± 0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H I column densities with an index of α ~ −1.4 for the column density range log N(H I) = 19.5−21. The fraction of H I mass in sub-DLAs is of the order of 30%. The H I column density distribution does not evolve strongly from z ~ 2.5 to z ~ 4.5

    Experimental Observation of Quantum Correlations in Modular Variables

    Full text link
    We experimentally detect entanglement in modular position and momentum variables of photon pairs which have passed through DD-slit apertures. We first employ an entanglement criteria recently proposed in [Phys. Rev. Lett. {\bf 106}, 210501 (2011)], using variances of the modular variables. We then propose an entanglement witness for modular variables based on the Shannon entropy, and test it experimentally. Finally, we derive criteria for Einstein-Podolsky-Rosen-Steering correlations using variances and entropy functions. In both cases, the entropic criteria are more successful at identifying quantum correlations in our data.Comment: 7 pages, 4 figures, comments welcom

    Cosmological constant constraints from observation-derived energy condition bounds and their application to bimetric massive gravity

    Full text link
    Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternative theory whose extra term acts as a cosmological constant. For this purpose, we apply a model-independent approach to reconstruct the recent expansion of the universe. Using Type Ia supernova, baryon acoustic oscillations and cosmic-chronometer data, we perform a Markov Chain Monte Carlo analysis to put constraints on the effective cosmological constant Ωeff0\Omega^0_{\rm eff}. By imposing that the cosmological constant is the only component that possibly violates the ECs, we derive lower and upper bounds for its value. For instance, we obtain that 0.59<Ωeff0<0.910.59 < \Omega^0_{\rm eff} < 0.91 and 0.40<Ωeff0<0.930.40 < \Omega^0_{\rm eff} < 0.93 within, respectively, 1σ1\sigma and 3σ3\sigma confidence levels. In addition, about 30\% of the posterior distribution is incompatible with a cosmological constant, showing that this method can potentially rule it out as a mechanism for the accelerated expansion. We also study the consequence of these constraints for two particular formulations of the bimetric massive gravity. Namely, we consider the Visser's theory and the Hassan and Roses's massive gravity by choosing a background metric such that both theories mimic General Relativity with a cosmological constant. Using the Ωeff0\Omega^0_{\rm eff} observational bounds along with the upper bounds on the graviton mass we obtain constraints on the parameter spaces of both theories.Comment: 11 pages, 4 figures, 1 tabl

    Data-Mining a Large Digital Sky Survey: From the Challenges to the Scientific Results

    Get PDF
    The analysis and an efficient scientific exploration of the Digital Palomar Observatory Sky Survey (DPOSS) represents a major technical challenge. The input data set consists of 3 Terabytes of pixel information, and contains a few billion sources. We describe some of the specific scientific problems posed by the data, including searches for distant quasars and clusters of galaxies, and the data-mining techniques we are exploring in addressing them. Machine-assisted discovery methods may become essential for the analysis of such multi-Terabyte data sets. New and future approaches involve unsupervised classification and clustering analysis in the Giga-object data space, including various Bayesian techniques. In addition to the searches for known types of objects in this data base, these techniques may also offer the possibility of discovering previously unknown, rare types of astronomical objects.Comment: Invited paper, to appear in Applications of Digital Image Processing XX, ed. A. Tescher, Proc. S.P.I.E. vol. 3164, in press; 10 pages, a self-contained TeX file, and 3 separate postscript figure
    corecore