35,942 research outputs found

    Thermal treatment of superconductor thin film of the BSCCO system using domestic microwave oven

    Full text link
    In this work, we report the preparation of a superconductor thin film of the BSCCO system using a good quality powder with nominal composition Bi_{1.8}Pb_{0.4}Sr_2CaCu_2O_x which was thermally treated using a domestic microwave oven (2.45 GHz, 800 W). This film was grew on a single crystal of LaAlO_3(100) substrate and exhibited a crystalline structure with the c-axis perpendicular to the plane of the substrate. An onset superconducting transition temperature was measured at 80 K.Comment: 4 pages, 5 figure

    Fast gates for ion traps by splitting laser pulses

    Get PDF
    We present a fast phase gate scheme that is experimentally achievable and has an operation time more than two orders of magnitude faster than current experimental schemes for low numbers of pulses. The gate time improves with the number of pulses following an inverse power law. Unlike implemented schemes which excite precise motional sidebands, thus limiting the gate timescale, our scheme excites multiple motional states using discrete ultra-fast pulses.We use beam-splitters to divide pulses into smaller components to overcome limitations due to the finite laser pulse repetition rate. This provides gate times faster than proposed theoretical schemes when we optimize a practical setup

    Evidence for uteroplacental malperfusion in fetuses with major congenital heart defects.

    Get PDF
    AIMS: Fetuses affected by congenital heart defects (CHD) are considered to be at increased risk of fetal growth restriction and intrauterine demise. Whether these risks are a direct consequence of fetal CHD or a result of associated uteroplacental dysfunction is not evident from the data of recent studies. The aim of this study was to investigate the prevalence of uteroplacental dysfunction reflected by abnormal uterine artery Doppler indices and reduced fetal growth in CHD pregnancies. METHODS: This is a retrospective case-control study including singleton pregnancies referred for detailed fetal cardiac assessment subsequently diagnosed with or without CHD. Mid-trimester uterine artery Doppler assessment at 20-24 weeks as well as third trimester fetal biometry and arterial Doppler pulsatility indices (PI) were performed. All fetal biometry were converted into centiles and Doppler values to multiples of median (MoM) to adjust for physiological changes with gestation. RESULTS: The study included 811 pregnancies including 153 cases where the fetus was diagnosed with CHD. Mid-pregnancy uterine artery PI was significantly higher in women with fetal CHD compared to controls (0.90MoM vs 0.83MoM; p = 0.006). In the third trimester, median centiles for fetal head circumference (45.4 vs 57.07; p<0.001), abdominal circumference (51.17 vs 55.71; p = 0.014), estimated fetal weight (33.6 vs 56.7; p<0.001) and cerebroplacental ratio (CPR: 0.84MoM vs 0.95MoM; p<0.001) were significantly lower in fetuses with CHD compared to controls. The percentage of small for gestational age births <10th centile (24.0% vs 10.7%; <0.001) and low CPR <0.6MoM (11.7% vs 2.5%; p<0.001) were significantly higher in the fetal CHD cohort. CONCLUSIONS: Mid-pregnancy uterine artery resistance is increased and subsequent fetal biometry reduced in pregnancies with CHD fetuses. These findings suggest that fetal CHD are associated with uteroplacental dysfunction, secondary to impaired maternal uteroplacental perfusion resulting in relative fetal hypoxaemia and reduced fetal growth

    Polarimetry of Compact Symmetric Objects

    Get PDF
    We present multi-frequency VLBA observations of two polarized Compact Symmetric Objects (CSOs), J0000+4054 and J1826+1831, and a polarized CSO candidate, J1915+6548. Using the wavelength-squared dependence of Faraday rotation, we obtained rotation measures (RMs) of -180 \pm 10 rad m^-2 and 1540 \pm 7 rad m^-2 for the latter two sources. These are lower than what is expected of CSOs (several 1000 rad m^-2) and, depending on the path length of the Faraday screens, require magnetic fields from 0.03 to 6 \mu G. These CSOs may be more heavily affected by Doppler boosting than their unpolarized counterparts, suggesting that a jet-axis orientation more inclined towards the line of sight is necessary to detect any polarization. This allows for low RMs if the polarized components are oriented away from the depolarizing circumnuclear torus. These observations also add a fourth epoch to the proper motion studies of J0000+4054 and J1826+1831, constraining their kinematic age estimates to >610 yrs and 2600 \pm 490 yrs, respectively. The morphology, spectrum, and component motions of J1915+6548 are discussed in light of its new classification as a CSO candidate, and its angle to the line of sight (~50\deg) is determined from relativistic beaming arguments.Comment: 29 pages, including 9 figures; Accepted by Astrophysical Journal, 16 Feb 0

    Manejo e controle de plantas infestantes em fruteiras tropicais.

    Get PDF
    A produção agrícola brasileira é a cada dia demandada para oferecer produtos de qualidade ao consumidor, produzidos por sistemas de produção agrícolas economicamente viáveis, energeticamente eficientes e ecologicamente sustentáveis que protejam e conservem os recursos naturais e o meio ambiente.Palestra

    Validation of the Lower Tagus Valley velocity and structural model using ambient noise broadband measurements

    Get PDF
    Along his history the Lower Tagus Valley (LTV) region was shaken by several earthquakes, some of them were produced in large ruptures of offshore structures located southwest of the Portuguese coastline, among these we the Lisbon earthquake of 1 November 1755; other moderates earthquakes were produced by local sources such as the 1344, 1531 and the 1909 Benavente earthquake. In order to promote an improved assessment of the seismic hazard in this region, we propose the introduction of realistic methods on the prediction of ground motion produced by moderate to large earthquakes in LTV. This process involves the establishment of a structural 3D model based on all the available geophysical and geotechnical data on the area (seismic, gravimetric, deep wells and geological outcrops) and the determination of wave propagation from a finite difference method: by applying the E3D program [1,2]. To confirm this model we use broadband ambient noise measurements collected in two profiles with azimuth perpendicular to the basin axis and we applied the horizontal to vertical (H/V) spectral ratio method [3] to the recordings in order to estimate the amplification of the basin. The H/V curves obtained reveals the existence of two low frequency peaks centered on 0.2 a 1 Hz frequencies[4]. These peaks are strongly related with the thickness of Cenozoic and alluvial sediments. By inversion of the H/V curve, we obtain a more detailed velocity model for the region where the profile were determined, which is in good agreement with borehole data and other results obtained with magnetic and seismic reflection methods

    Physical parameters in the hot spots and jets of Compact Symmetric Objects

    Get PDF
    We present a model to determine the physical parameters of jets and hot spots of a sample of CSOs under very basic assumptions like synchrotron emission and minimum energy conditions. Based on this model we propose a simple evolutionary scenario for these sources assuming that they evolve in ram pressure equilibrium with the external medium and constant jet power. The parameters of our model are constrained from fits of observational data (radio luminosity, hot spot radius and hot spot advance speed) versus projected linear size. From these plots we conclude that CSOs evolve self-similarly and that their radio luminosity increases with linear size along the first kiloparsec. Assuming that the jets feeding CSOs are relativistic from both kinematical and thermodynamical points of view, we use the values of the pressure and particle number density within the hot spots to estimate the fluxes of momentum (thrust), energy, and particles of these relativistic jets. The mean jet power obtained in this way is within an order of magnitude that inferred for FRII sources, which is consistent with CSOs being the possible precursors of large doubles. The inferred flux of particles corresponds to, for a barionic jet, about a 10% of the mass accreted by a black hole of 108M10^8 {\rm M_{\odot}} at the Eddington limit, pointing towards a very efficient conversion of accretion flow into ejection, or to a leptonic composition of jets.Comment: 11 pages, 2 figures. Accepted for publication in Astrophysical Journa
    corecore