6 research outputs found

    El paper de Lluís Solé i Sabarís en la "Geografia de Catalunya"

    Get PDF
    Parlar de Lluis Solé Sabans corn a geògraf és una tasca que ultrapassa de molt les meves possibilitats, ja que no es tracta simplement d'escorcollar els aspectes mes geogràfics d'un geòleg. Ans al contrari, sense voler prejutjar la seva tasca immensa en el camp de la Geologia, cal dir tot seguit que SoléSabans és ell mateix un geògraf. Efectivament, des de les seves classes de Geografia a l'Institut-escola «Giner de los Ríos» de la Generalitat a les seves activitats més recents com a president de la Societat Csltalana de Geografia, passant pel seu mestratge a tants de geògrafs al Consejo Superior de Investigaciones Científicas de Barcelona o als cursets de Pirineus, o per bona part de les seves obres i escrits, arreu hi podem trobar i'alenar de tot un geògraf de l'escola francesa. (...

    The impact of rational surfaces on radial heat transport in TJ-II

    Get PDF
    Autor colectivo: TJ-II TeamIn this work, we study the outward propagation of temperature perturbations. For this purpose, we apply an advanced analysis technique, transfer entropy, to ECE measurements performed in ECR heated discharges at the low-shear stellarator TJ-II. We observe that the propagation of these perturbations is not smooth, but is slowed down at specific radial positions, near 'trapping zones' characterized by long time lags with respect to the perturbation origin. We also detect instances of rapid or instantaneous (non-local) propagation, in which perturbations appear to 'jump over' specific radial regions. The analysis of perturbations introduced in a resistive magneto-hydrodynamic model of the plasma leads to similar results. The radial regions corresponding to slow radial transport are identified with maxima of the flow shear associated with rational surfaces (mini-transport barriers). The non-local interactions are ascribed to MHD mode coupling effects

    Filaments in the edge confinement region of TJ-II

    Get PDF
    Autor colectivo: TJ-II TeamFloating potential measurements from two remote reciprocating probes in the plasma edge region of the TJ-II stellarator are analyzed using the transfer entropy, revealing the spatial dimensions and propagation properties of filamentary structures. The results are corroborated by performing simulations with a resistive MHD model and analyzing data from synthetic diagnostics. The transfer entropy captures the rotation of the filaments and allows the calculating of their rotation velocity. This deduced velocity was compared to the (known) poloidal velocity of the plasma and showed a relatively good agreement

    The role of magnetic islands in modifying long range temporal correlations of density fluctuations and local heat transport

    Get PDF
    This work explores the relation between magnetic islands, long range temporal correlations and heat transport. A low order rational surface (t = 3/2) was purposely scanned outward through an electron cyclotron resonance heated (ECRH) plasma in the TJ-II stellarator. Density turbulence and the poloidal flow velocity were characterized using a two channel Doppler reflectometer. Simultaneously, the ECRH power was modulated to characterize heat transport, using measurements from a 12 channel electron cyclotron emission diagnostic. A systematic variation of the poloidal velocity was found to be associated with the t = 3/2 rational surface. Near the rational surface, the Hurst exponent, quantifying the nature of long-range correlations, was reduced below 0.5 (indicating subdiffusion), while at radii smaller than that of the rational surface, it was found to be significantly enhanced (superdiffusion). In the latter region, heat transport was enhanced as well, thus establishing a link between density fluctuations and anomalous heat transport. The observed variation of the Hurst exponent was consistent with a magnetohydrodynamic turbulence simulation

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F
    corecore