4 research outputs found

    Myocardial fibrosis and diastolic dysfunction in patients on chronic haemodialysis

    Get PDF
    BACKGROUND: Left ventricular (LV) diastolic dysfunction is linked to myocardial collagen content in many cardiac diseases. There are no data regarding such relationship in patients with end-stage renal disease (ESRD) undergoing haemodialysis. METHODS: Twenty-five patients with ESRD undergoing haemodialysis were studied by echocardiography. LV diastolic function was investigated by Doppler echocardiography, by analysing LV filling velocities at rest and during loading manoeuvres, which represent an estimate of LV filling pressure. According to the Doppler pattern, LV filling pressure in a given patient was judged to be normal or slightly increased or to be moderately or severely increased. The presence of myocardial fibrosis was estimated by ultrasound tissue characterization with integrated backscatter, which in diastole correlates with the collagen content of the myocardium. RESULTS: Integrated backscatter was higher in patients with moderate or severely increased than in patients with normal or slightly increased LV filling pressure (integrated backscatter: 51.0 +/- 9.8 vs 41.6 +/- 5.6%; P = 0.008). Integrated backscatter was a strong and independent determinant of diastolic dysfunction (odds ratio = 1.212; P = 0.040). CONCLUSION: Our data support the hypothesis that, in a selected population of patients with ESRD undergoing haemodialysis, myocardial fibrosis is associated with LV diastolic myocardial propertie

    Late Onset Occurrence of Concomitant Myocardial Infarction and Ischemic Stroke in Hospitalized COVID-19 Patient: A Case Report

    No full text
    We described the case of a 68-year-old COVID-19 patient with hypertension and dyslipidemia who discontinued the cardiovascular medications during hospitalization and experienced a late onset occurrence of concomitant ST-elevation myocardial infarction and ischemic stroke at resolution of SARS-CoV-2 pneumonia

    SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis

    No full text
    Background: Sodium-glucose transporter 2 inhibitors (SGLT2-I) could modulate atherosclerotic plaque progression, via down-regulation of inflammatory burden, and lead to reduction of major adverse cardiovascular events (MACEs) in type 2 diabetes mellitus (T2DM) patients with ischemic heart disease (IHD). T2DM patients with multivessel non-obstructive coronary stenosis (Mv-NOCS) have over-inflammation and over-lipids' plaque accumulation. This could reduce fibrous cap thickness (FCT), favoring plaque rupture and MACEs. Despite this, there is not conclusive data about the effects of SGLT2-I on atherosclerotic plaque phenotype and MACEs in Mv-NOCS patients with T2DM. Thus, in the current study, we evaluated SGLT2-I effects on Mv-NOCS patients with T2DM in terms of FCT increase, reduction of systemic and coronary plaque inflammation, and MACEs at 1 year of follow-up. Methods: In a multi-center study, we evaluated 369 T2DM patients with Mv-NOCS divided in 258 (69.9%) patients that did not receive the SGLT2-I therapy (Non-SGLT2-I users), and 111 (30.1%) patients that were treated with SGLT2-I therapy (SGLT2-I users) after percutaneous coronary intervention (PCI) and optical coherence tomography (OCT) evaluation. As the primary study endpoint, we evaluated the effects of SGLT2-I on FCT changes at 1 year of follow-up. As secondary endpoints, we evaluated at baseline and at 12 months follow-up the inflammatory systemic and plaque burden and rate of MACEs, and predictors of MACE through multivariable analysis. Results: At 6 and 12 months of follow-up, SGLT2-I users vs. Non-SGLT2-I users showed lower body mass index (BMI), glycemia, glycated hemoglobin, B-type natriuretic peptide, and inflammatory cells/molecules values (p < 0.05). SGLT2-I users vs. Non-SGLT2-I users, as evaluated by OCT, evidenced the highest values of minimum FCT, and lowest values of lipid arc degree and macrophage grade (p < 0.05). At the follow-up end, SGLT2-I users vs. Non-SGLT2-I users had a lower rate of MACEs [n 12 (10.8%) vs. n 57 (22.1%); p < 0.05]. Finally, Hb1Ac values (1.930, [CI 95%: 1.149-2.176]), macrophage grade (1.188, [CI 95%: 1.073-1.315]), and SGLT2-I therapy (0.342, [CI 95%: 0.180-0.651]) were independent predictors of MACEs at 1 year of follow-up. Conclusions: SGLT2-I therapy may reduce about 65% the risk to have MACEs at 1 year of follow-up, via ameliorative effects on glucose homeostasis, and by the reduction of systemic inflammatory burden, and local effects on the atherosclerotic plaque inflammation, lipids' deposit, and FCT in Mv-NOCS patients with T2DM
    corecore