1,578 research outputs found
Old and young bulges in late-type disk galaxies
ABRIDGED: We use HSTACS and NICMOS imaging to study the structure and colors
of a sample of nine late-type spirals. We find: (1) A correlation between bulge
and disks scale-lengths, and a correlation between the colors of the bulges and
those of the inner disks. Our data show a trend for bulges to be more
metal-enriched than their surrounding disks, but otherwise no simple
age-metallicity connection between these systems; (2) A large range in bulge
stellar population properties, and, in particular, in stellar ages.
Specifically, in about a half of the late-type bulges in our sample the bulk of
the stellar mass was produced recently. Thus, in a substantial fraction of the
z=0 disk-dominated bulged galaxies, bulge formation occurs after the
formation/accretion of the disk; (3) In about a half of the late-type bulges in
our sample, however, the bulk of the stellar mass was produced at early epochs;
(4) Even these "old" late-type bulges host a significant fraction of stellar
mass in a young(er) c component; (5) A correlation for bulges between stellar
age and stellar mass, in the sense that more massive late-type bulges are older
than less massive late-type bulges. Since the overall galaxy luminosity (mass)
also correlates with the bulge luminosity (mass), it appears that the galaxy
mass regulates not only what fraction of itself ends up in the bulge component,
but also "when" bulge formation takes place. We show that dynamical friction of
massive clumps in gas-rich disks is a plausible disk-driven mode for the
formation of "old" late-type bulges. If disk evolutionary processes are
responsible for the formation of the entire family of late-type bulges, CDM
simulations need to produce a similar number of initially bulgeless disks in
addition to the disk galaxies that are observed to be bulgeless at z=0.Comment: ApJ in press; paper with high resolution figures available at
http://www.exp-astro.phys.ethz.ch/carollo/carollo1_2006.pdf; B, I, and H
surface brightness profiles published in electronic tabular for
Searches for the Most Metal-Poor Candidates from SDSS and SEGUE
We report on efforts to identify large samples of very and extremely
metal-poor stars based on medium-resolution spectroscopy and ugriz photometry
obtained during the course of the Sloan Digital Sky Survey (SDSS), and its
extension, SDSS-II, which includes the program SEGUE: Sloan Extension for
Galactic Understanding and Exploration. To date, over 8000 stars with [Fe/H] <=
-2.0 and effective temperatures in the range 4500K < T_eff < 7000K have been
found, with the expected numbers in this temperature range to be well over
10,000 once SEGUE is completed. The numbers roughly double when one includes
warmer blue stragglers and Blue Horizontal-Branch (BHB) stars in these counts.
We show the observed low-metallicity tails of the Metallicity Distribution
Functions for the cooler SDSS/SEGUE stars obtained thus far. We also comment on
the confirmation of an inner/outer halo dichotomy in the Milky Way, and on how
this realization may be used to direct searches for even more metal-poor stars
in the near future.Comment: 5 pages, 4 figures, from the conference "First Stars III", held in
July 200
The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies
The physical mechanisms and timescales that determine the morphological
signatures and the quenching of star formation of typical (~L*) elliptical
galaxies are not well understood. To address this issue, we have simulated the
formation of a group of galaxies with sufficient resolution to track the
evolution of gas and stars inside about a dozen galaxy group members over
cosmic history. Galaxy groups, which harbor many elliptical galaxies in the
universe, are a particularly promising environment to investigate morphological
transformation and star formation quenching, due to their high galaxy density,
their relatively low velocity dispersion, and the presence of a hot intragroup
medium. Our simulation reproduces galaxies with different Hubble morphologies
and, consequently, enables us to study when and where the morphological
transformation of galaxies takes place. The simulation does not include
feedback from active galactic nuclei showing that it is not an essential
ingredient for producing quiescent, red elliptical galaxies in galaxy groups.
Ellipticals form, as suspected, through galaxy mergers. In contrast with what
has often been speculated, however, these mergers occur at z>1, before the
merging progenitors enter the virial radius of the group and before the group
is fully assembled. The simulation also shows that quenching of star formation
in the still star-forming elliptical galaxies lags behind their morphological
transformation, but, once started, is taking less than a billion years to
complete. As long envisaged the star formation quenching happens as the
galaxies approach and enter the finally assembled group, due to quenching of
gas accretion and (to a lesser degree) stripping. A similar sort is followed by
unmerged, disk galaxies, which, as they join the group, are turned into the
red-and-dead disks that abound in these environments.Comment: 12 pages, 12 Figures, 1 Table, accepted for publication in AP
Geometric phases and criticality in spin systems
A general formalism of the relation between geometric phases produced by
circularly evolving interacting spin systems and their criticality behavior is
presented. This opens up the way for the use of geometric phases as a tool to
study regions of criticality without having to undergo a quantum phase
transition. As a concrete example a spin-1/2 chain with XY interactions is
presented and the corresponding geometric phases are analyzed. The
generalization of these results to the case of an arbitrary spin system
provides an explanation for the existence of such a relation.Comment: 12 pages, 4 figure
Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings
In this paper, the influence of the in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron (EN GJS 700-2) castings has been investigated.
Axial fatigue tests under nominal load ratio R=0 have been performed on specimens taken from the core of large casting components. Metallographic analyses have been carried out by means of optical microscopy and important microstructural parameters that affect the mechanical properties of the alloy, such as nodule count, nodularity and graphite shape, were measured. Furthermore, Scanning Electron Microscopy was used to investigate the fracture surfaces of the samples in order to identify crack initiation and propagation zones.
Cracks initiation sites have been found to be microshrinkages close to specimens\u2019 surface in most cases. It was found that in-mould inoculant composition strongly influences the alloy microstructure, such as nodule count and shrinkage porosities size, as well as the fatigue resistance of heavy section ductile iron castings
On the relation between sSFR and metallicity
In this paper we present an exact general analytic expression
linking the gas metallicity Z to the specific
star formation rate (sSFR), that validates and extends the approximate relation
put forward by Lilly et al. (2013, L13), where is the yield per stellar
generation, is the instantaneous ratio between inflow and star
formation rate expressed as a function of the sSFR, and is the integral of
the past enrichment history, respectively. We then demonstrate that the
instantaneous metallicity of a self-regulating system, such that its sSFR
decreases with decreasing redshift, can be well approximated by the first term
on the right-hand side in the above formula, which provides an upper bound to
the metallicity. The metallicity is well approximated also by the L13 ideal
regulator case, which provides a lower bound to the actual metallicity. We
compare these approximate analytic formulae to numerical results and infer a
discrepancy <0.1 dex in a range of metallicities and almost three orders of
magnitude in the sSFR. We explore the consequences of the L13 model on the
mass-weighted metallicity in the stellar component of the galaxies. We find
that the stellar average metallicity lags 0.1-0.2 dex behind the gas-phase
metallicity relation, in agreement with the data. (abridged)Comment: 14 pages, 6 figures, MNRAS accepte
Stellar haloes in Milky-Way mass galaxies: From the inner to the outer haloes
We present a comprehensive study of the chemical properties of the stellar
haloes of Milky-Way mass galaxies, analysing the transition between the inner
to the outer haloes. We find the transition radius between the relative
dominance of the inner-halo and outer-halo stellar populations to be ~15-20 kpc
for most of our haloes, similar to that inferred for the Milky Way from recent
observations. While the number density of stars in the simulated inner-halo
populations decreases rapidly with distance, the outer-halo populations
contribute about 20-40 per cent in the fiducial solar neighborhood, in
particular at the lowest metallicities. We have determined [Fe/H] profiles for
our simulated haloes; they exhibit flat or mild gradients, in the range
[-0.002, -0.01 ] dex/kpc. The metallicity distribution functions exhibit
different features, reflecting the different assembly history of the individual
stellar haloes. We find that stellar haloes formed with larger contributions
from massive subgalactic systems have steeper metallicity gradients. Very
metal-poor stars are mainly contributed to the halo systems by lower-mass
satellites. There is a clear trend among the predicted metallicity distribution
functions that a higher fraction of low-metallicity stars are found with
increasing radius. These properties are consistent with the range of behaviours
observed for stellar haloes of nearby galaxies.Comment: 11 pages, 6 figures. Accepted MNRAS. Revised version after referee's
comment
- …