292 research outputs found
Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results
We review some recent attempts to extract information about the nature of
quantum gravity, with and without matter, by quantum field theoretical methods.
More specifically, we work within a covariant lattice approach where the
individual space-time geometries are constructed from fundamental simplicial
building blocks, and the path integral over geometries is approximated by
summing over a class of piece-wise linear geometries. This method of
``dynamical triangulations'' is very powerful in 2d, where the regularized
theory can be solved explicitly, and gives us more insights into the quantum
nature of 2d space-time than continuum methods are presently able to provide.
It also allows us to establish an explicit relation between the Lorentzian- and
Euclidean-signature quantum theories. Analogous regularized gravitational
models can be set up in higher dimensions. Some analytic tools exist to study
their state sums, but, unlike in 2d, no complete analytic solutions have yet
been constructed. However, a great advantage of our approach is the fact that
it is well-suited for numerical simulations. In the second part of this review
we describe the relevant Monte Carlo techniques, as well as some of the
physical results that have been obtained from the simulations of Euclidean
gravity. We also explain why the Lorentzian version of dynamical triangulations
is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde
- …