1,475 research outputs found

    Critical Exponents near a Random Fractal Boundary

    Full text link
    The critical behaviour of correlation functions near a boundary is modified from that in the bulk. When the boundary is smooth this is known to be characterised by the surface scaling dimension \xt. We consider the case when the boundary is a random fractal, specifically a self-avoiding walk or the frontier of a Brownian walk, in two dimensions, and show that the boundary scaling behaviour of the correlation function is characterised by a set of multifractal boundary exponents, given exactly by conformal invariance arguments to be \lambda_n = 1/48 (\sqrt{1+24n\xt}+11)(\sqrt{1+24n\xt}-1). This result may be interpreted in terms of a scale-dependent distribution of opening angles α\alpha of the fractal boundary: on short distance scales these are sharply peaked around α=π/3\alpha=\pi/3. Similar arguments give the multifractal exponents for the case of coupling to a quenched random bulk geometry.Comment: 13 pages. Comments on relation to results in quenched random bulk added, and on relation to other recent work. Typos correcte

    Critical Percolation in Finite Geometries

    Full text link
    The methods of conformal field theory are used to compute the crossing probabilities between segments of the boundary of a compact two-dimensional region at the percolation threshold. These probabilities are shown to be invariant not only under changes of scale, but also under mappings of the region which are conformal in the interior and continuous on the boundary. This is a larger invariance than that expected for generic critical systems. Specific predictions are presented for the crossing probability between opposite sides of a rectangle, and are compared with recent numerical work. The agreement is excellent.Comment: 10 page

    Calogero-Sutherland eigenfunctions with mixed boundary conditions and conformal field theory correlators

    Full text link
    We construct certain eigenfunctions of the Calogero-Sutherland hamiltonian for particles on a circle, with mixed boundary conditions. That is, the behavior of the eigenfunction, as neighbouring particles collide, depend on the pair of colliding particles. This behavior is generically a linear combination of two types of power laws, depending on the statistics of the particles involved. For fixed ratio of each type at each pair of neighboring particles, there is an eigenfunction, the ground state, with lowest energy, and there is a discrete set of eigenstates and eigenvalues, the excited states and the energies above this ground state. We find the ground state and special excited states along with their energies in a certain class of mixed boundary conditions, interpreted as having pairs of neighboring bosons and other particles being fermions. These particular eigenfunctions are characterised by the fact that they are in direct correspondence with correlation functions in boundary conformal field theory. We expect that they have applications to measures on certain configurations of curves in the statistical O(n) loop model. The derivation, although completely independent from results of conformal field theory, uses ideas from the "Coulomb gas" formulation.Comment: 35 pages, 9 figure

    The Number of Incipient Spanning Clusters in Two-Dimensional Percolation

    Full text link
    Using methods of conformal field theory, we conjecture an exact form for the probability that n distinct clusters span a large rectangle or open cylinder of aspect ratio k, in the limit when k is large.Comment: 9 pages, LaTeX, 1 eps figure. Additional references and comparison with existing numerical results include

    Critical behaviour in parabolic geometries

    Full text link
    We study two-dimensional systems with boundary curves described by power laws. Using conformal mappings we obtain the correlations at the bulk critical point. Three different classes of behaviour are found and explained by scaling arguments which also apply to higher dimensions. For an Ising system of parabolic shape the behaviour of the order at the tip is also found.Comment: Old paper, for archiving. 6 pages, 1 figure, epsf, IOP macr

    Effect of Random Impurities on Fluctuation-Driven First Order Transitions

    Full text link
    We analyse the effect of quenched uncorrelated randomness coupling to the local energy density of a model consisting of N coupled two-dimensional Ising models. For N>2 the pure model exhibits a fluctuation-driven first order transition, characterised by runaway renormalisation group behaviour. We show that the addition of weak randomness acts to stabilise these flows, in such a way that the trajectories ultimately flow back towards the pure decoupled Ising fixed point, with the usual critical exponents alpha=0, nu=1, apart from logarithmic corrections. We also show by examples that, in higher dimensions, such transitions may either become continuous or remain first order in the presence of randomness.Comment: 13 pp., LaTe

    Mean Area of Self-Avoiding Loops

    Full text link
    The mean area of two-dimensional unpressurised vesicles, or self-avoiding loops of fixed length NN, behaves for large NN as A0N3/2A_0 N^{3/2}, while their mean square radius of gyration behaves as R02N3/2R^2_0 N^{3/2}. The amplitude ratio A0/R02A_0/R_0^2 is computed exactly and found to equal 4π/54\pi/5. The physics of the pressurised case, both in the inflated and collapsed phases, may be usefully related to that of a complex O(n) field theory coupled to a U(1) gauge field, in the limit n0n \to 0.Comment: 12 pages, plain TeX, (one TeX macro omission corrected

    Junctions of anyonic Luttinger wires

    Full text link
    We present an extended study of anyonic Luttinger liquids wires jointing at a single point. The model on the full line is solved with bosonization and the junction of an arbitrary number of wires is treated imposing boundary conditions that preserve exact solvability in the bosonic language. This allows to reach, in the low momentum regime, some of the critical fixed points found with the electronic boundary conditions. The stability of all the fixed points is discussed.Comment: 16 pages, 2 figures, typos corrected, Refs adde

    A Monte Carlo study of the triangular lattice gas with the first- and the second-neighbor exclusions

    Full text link
    We formulate a Swendsen-Wang-like version of the geometric cluster algorithm. As an application,we study the hard-core lattice gas on the triangular lattice with the first- and the second-neighbor exclusions. The data are analyzed by finite-size scaling, but the possible existence of logarithmic corrections is not considered due to the limited data. We determine the critical chemical potential as μc=1.75682(2)\mu_c=1.75682 (2) and the critical particle density as ρc=0.180(4)\rho_c=0.180(4). The thermal and magnetic exponents yt=1.51(1)3/2y_t=1.51(1) \approx 3/2 and yh=1.8748(8)15/8y_h=1.8748 (8) \approx 15/8, estimated from Binder ratio QQ and susceptibility χ\chi, strongly support the general belief that the model is in the 4-state Potts universality class. On the other hand, the analyses of energy-like quantities yield the thermal exponent yty_t ranging from 1.440(5)1.440(5) to 1.470(5)1.470(5). These values differ significantly from the expected value 3/2, and thus imply the existence of logarithmic corrections.Comment: 4 figures 2 table

    Universal Amplitude Combinations for Self-Avoiding Walks, Polygons and Trails

    Full text link
    We give exact relations for a number of amplitude combinations that occur in the study of self-avoiding walks, polygons and lattice trails. In particular, we elucidate the lattice-dependent factors which occur in those combinations which are otherwise universal, show how these are modified for oriented lattices, and give new results for amplitude ratios involving even moments of the area of polygons. We also survey numerical results for a wide range of amplitudes on a number of oriented and regular lattices, and provide some new ones.Comment: 20 pages, NI 92016, OUTP 92-54S, UCSBTH-92-5
    corecore