13,697 research outputs found
Heterotic String Theory on non-Kaehler Manifolds with H-Flux and Gaugino Condensate
We discuss compactifications of heterotic string theory to four dimensions in
the presence of H-fluxes, which deform the geometry of the internal manifold,
and a gaugino condensate which breaks supersymmetry. We focus on the
compensation of the two effects in order to obtain vacua with zero cosmological
constant and we comment on the effective superpotential describing these vacua.Comment: 6 page
Duality Symmetries and Supersymmetry Breaking in String Compactifications
We discuss the spontaneous supersymetry breaking within the low-energy
effective supergravity action of four-dimensional superstrings. In particular,
we emphasize the non-universality of the soft supersymmetry breaking
parameters, the -problem and the duality symmetries.Comment: (invited talk to the 27th ICHEP, Glasgow, July 1994), 11 page
The world-sheet corrections to dyons in the Heterotic theory
All the linear alpha-prime corrections, however excluding the gravitational
Chern-Simons correction, are studied in the toroidally compactified critical
Heterotic string theory. These corrections are computed to the entropy for a
BPS static spherical four dimensional dyonic black hole which represents a
wrapped fundamental string carrying arbitrary winding and momentum charges
along one cycle in the presence of KK-monopole and H-monopole charges
associated to another cycle. It is verified that after the inclusion of the
gravitational Chern-Simons corrections [hep-th/0608182], all the linear
alpha-prime corrections to the entropy for the supersymmetric dyon can be
reproduced by the inclusion of only the Gauss-Bonnet Lagrangian to the
supergravity approximation of the induced Lagrangian.Comment: JHEP style, 17 Pages; v2: a typo corrected ; v3: The coupling of the
gravitational Chern-Simons terms to the three form field strength taken into
account. The conclusion correcte
BPS Action and Superpotential for Heterotic String Compactifications with Fluxes
We consider N =1 compactifications to four dimensions of heterotic string
theory in the presence of fluxes. We show that up to order O(\alpha'^2) the
associated action can be written as a sum of squares of BPS-like quantities. In
this way we prove that the equations of motion are solved by backgrounds which
fulfill the supersymmetry conditions and the Bianchi identities. We also argue
for the expression of the related superpotential and discuss the radial modulus
stabilization for a class of examples.Comment: LaTeX, 28 pages. Minor changes, one more reference added. Final
version to appear on JHE
Black hole entropy functions and attractor equations
The entropy and the attractor equations for static extremal black hole
solutions follow from a variational principle based on an entropy function. In
the general case such an entropy function can be derived from the reduced
action evaluated in a near-horizon geometry. BPS black holes constitute special
solutions of this variational principle, but they can also be derived directly
from a different entropy function based on supersymmetry enhancement at the
horizon. Both functions are consistent with electric/magnetic duality and for
BPS black holes their corresponding OSV-type integrals give identical results
at the semi-classical level. We clarify the relation between the two entropy
functions and the corresponding attractor equations for N=2 supergravity
theories with higher-derivative couplings in four space-time dimensions. We
discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change
Partition functions and elliptic genera from supergravity
We develop the spacetime aspects of the computation of partition functions
for string/M-theory on AdS(3) xM. Subleading corrections to the semi-classical
result are included systematically, laying the groundwork for comparison with
CFT partition functions via the AdS(3)/CFT(2) correspondence. This leads to a
better understanding of the "Farey tail" expansion of Dijkgraaf et. al. from
the point of view of bulk physics. Besides clarifying various issues, we also
extend the analysis to the N=2 setting with higher derivative effects included.Comment: 34 page
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Entropy Function for Heterotic Black Holes
We use the entropy function formalism to study the effect of the Gauss-Bonnet
term on the entropy of spherically symmetric extremal black holes in heterotic
string theory in four dimensions. Surprisingly the resulting entropy and the
near horizon metric, gauge field strengths and the axion-dilaton field are
identical to those obtained by Cardoso et. al. for a supersymmetric version of
the theory that contains Weyl tensor squared term instead of the Gauss-Bonnet
term. We also study the effect of holomorphic anomaly on the entropy using our
formalism. Again the resulting attractor equations for the axion-dilaton field
and the black hole entropy agree with the corresponding equations for the
supersymmetric version of the theory. These results suggest that there might be
a simpler description of supergravity with curvature squared terms in which we
supersymmetrize the Gauss-Bonnet term instead of the Weyl tensor squared term.Comment: LaTeX file, 23 pages; v2: references added; v3: minor addition; v4:
minor change
Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant
We derive an expression for the quasinormal modes of scalar perturbations in
near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de
Sitter black holes. We show that, in the near extreme limit, the dynamics of
the scalar field is characterized by a Poschl-Teller effective potential. The
results are qualitatively independent of the spacetime dimension and field
mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review
- …
