18,695 research outputs found

    Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints

    Full text link
    The Davey-Stewartson I equation is a typical integrable equation in 2+1 dimensions. Its Lax system being essentially in 1+1 dimensional form has been found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the present paper, this essentially 1+1 dimensional Lax system is further nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems are completely integrable in Liouville sense by finding a full set of integrals of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001

    Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy

    Full text link
    Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense, which also provides us with new examples of finite dimensional integrable Hamiltonian systems. A sort of involutive solutions to the Kaup-Newell hierarchy are exhibited through the obtained finite dimensional integrable systems and the general involutive system engendered by binary nonlinearization is reduced to a specific involutive system generated by mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento

    Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater

    Get PDF
    Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic units (OTUs) and 24 archaeal OTUs were identified by building 16S rRNA gene of bacterial and archaeal clone libraries. Most bacterial OTUs were identified as phyla of Firmicutes (53.3%), Chloroflexi (20.0%), Proteobacteria (11.1%), Bacteroidetes (6.7%) and a candidate division (2.2%). Methanosaeta (57.5%) were the most abundant archaeal group, followed by Methanobacterium (10.6%), Methanomethylovorans (8.5%) and Methanosarcina (6.4%). Most bacterial species take charge of cellulolysis, proteolysis, acidogenesis and homo-acetogenesis; the most methanogens were typical hydrogenotrophic or hydrogenotrophic/aceticlastic. This study revealed a succession of both bacterial and archaeal populations during the trial, which could be linked to operational adaptation of high concentration organic cassava wastewater.Keywords: Full-scale, anaerobic reactor, 16S rRNA gene clone library, microbial diversity, functional analysis

    Finite-dimensional integrable systems associated with Davey-Stewartson I equation

    Full text link
    For the Davey-Stewartson I equation, which is an integrable equation in 1+2 dimensions, we have already found its Lax pair in 1+1 dimensional form by nonlinear constraints. This paper deals with the second nonlinearization of this 1+1 dimensional system to get three 1+0 dimensional Hamiltonian systems with a constraint of Neumann type. The full set of involutive conserved integrals is obtained and their functional independence is proved. Therefore, the Hamiltonian systems are completely integrable in Liouville sense. A periodic solution of the Davey-Stewartson I equation is obtained by solving these classical Hamiltonian systems as an example.Comment: 18 pages, LaTe

    The roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy

    Full text link
    The reaction dynamics of axisymmetric deformed 24^{24}Mg + 24^{24}Mg collisions have been investigated systematically by an isospin-dependent quantum molecular dynamics (IDQMD) model. It is found that different deformations and orientations result in apparently different properties of reaction dynamics. We revealed that some observables such as nuclear stopping power (RR), multiplicity of fragments, and elliptic flow are very sensitive to the initial deformations and orientations. There exists an eccentricity scaling of elliptic flow in central body-body collisions with different deformations. In addition, the tip-tip and body-body configurations turn out to be two extreme cases in central reaction dynamical process.Comment: 5 pages, 7 figures, to appear in Physical Review C (Rapid Communication
    corecore