10,791 research outputs found

    Exact Random Walk Distributions using Noncommutative Geometry

    Full text link
    Using the results obtained by the non commutative geometry techniques applied to the Harper equation, we derive the areas distribution of random walks of length N N on a two-dimensional square lattice for large N N , taking into account finite size contributions.Comment: Latex, 3 pages, 1 figure, to be published in J. Phys. A : Math. Ge

    Entropic Barriers, Frustration and Order: Basic Ingredients in Protein Folding

    Full text link
    We solve a model that takes into account entropic barriers, frustration, and the organization of a protein-like molecule. For a chain of size MM, there is an effective folding transition to an ordered structure. Without frustration, this state is reached in a time that scales as MλM^{\lambda}, with λ≃3\lambda\simeq 3. This scaling is limited by the amount of frustration which leads to the dynamical selectivity of proteins: foldable proteins are limited to ∌300\sim 300 monomers; and they are stable in {\it one} range of temperatures, independent of size and structure. These predictions explain generic properties of {\it in vivo} proteins.Comment: 4 pages, 4 Figures appended as postscript fil

    Dimensional analysis and Rutherford Scattering

    Full text link
    Dimensional analysis, and in particular the Buckingham Π\Pi theorem is widely used in fluid mechanics. In this article we obtain an expression for the impact parameter from Buckingham's theorem and we compare our result with Rutherford's original discovery found in the early twentieth century

    Electron and ion stagnation at the collision front between two laser produced plasmas

    Get PDF
    We report results from a combined optical interferometric and spectrally resolved imaging study on colliding laser produced aluminium plasmas. A Nomarski interferometer was used to probe the spatio-temporal distribution of electron densities at the collision front. Analysis of the resulting interferograms reveals the formation and evolution of a localized electron density feature with a well-defined profile reminiscent of a stagnation layer. Electron stagnation begins at a time delay of 10 ns after the peak of the plasma generating laser pulse. The peak electron density was found to exceed 10^19 cm^−3 and the layer remained well defined up to a time delay of ca 100 ns. Temporally and spectrally resolved optical imaging was also undertaken, to compare the Al^+ ion distribution with that of the 2D electron density profile. This revealed nascent stagnation of singly charged ions at a delay time of 20 ns. We attribute these results to the effects of space charge separation in the seed plasma plumes

    Path integral approach to no-Coriolis approximation in heavy-ion collisions

    Get PDF
    We use the two time influence functional method of the path integral approach in order to reduce the dimension of the coupled-channels equations for heavy-ion reactions based on the no-Coriolis approximation. Our method is superior to other methods in that it easily enables us to study the cases where the initial spin of the colliding particle is not zero. It can also be easily applied to the cases where the internal degrees of freedom are not necessarily collective coordinates. We also clarify the underlying assumptions in our approach.Comment: 11 pages, Latex, Phys. Rev. C in pres

    FastContact: a free energy scoring tool for protein–protein complex structures

    Get PDF
    ‘FastContact’ is a server that estimates the direct electrostatic and desolvation interaction free energy between two proteins in units of kcal/mol. Users submit two proteins in PDB format, and the output is emailed back to the user in three files: one output file, and the two processed proteins. Besides the electrostatic and desolvation free energy, the server reports residue contact free energies that rapidly highlight the hotspots of the interaction and evaluates the van der Waals interaction using CHARMm. Response time is ∌1 min. The server has been successfully tested and validated, scoring refined complex structures and blind sets of docking decoys, as well as proven useful predicting protein interactions. ‘FastContact’ offers unique capabilities from biophysical insights to scoring and identifying important contacts

    Gravitomagnetism in Metric Theories: Analysis of Earth Satellites Results, and its Coupling with Spin

    Full text link
    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption of the coupling spin--gravotimagnetism, but also to measure some PPN parameters and to obtain functional dependences among them.Comment: 10 page
    • 

    corecore