304 research outputs found

    Retraction of "Near-Deterministic Discrimination of All Bell States with Linear Optics," Phys. Rev. Lett. 107, 080403 (2011) and Erratum Phys. Rev. Lett. 107, 219901 (2011)

    Full text link
    The original versions (1 and 2) of this paper paper contain a fatal error. All my attempts to patch the error have failed. As a service to the community I explain the error in some detail.Comment: The original paper (v. 1 and 2) was retracted from Phys. Rev. Lett. 107, 080403 (2011) and its Erratum Phys. Rev. Lett. 107. 219901 (2011

    Complete and Deterministic discrimination of polarization Bell state assisted by momentum entanglement

    Get PDF
    A complete and deterministic Bell state measurement was realized by a simple linear optics experimental scheme which adopts 2-photon polarization-momentum hyperentanglement. The scheme, which is based on the discrimination among the single photon Bell states of the hyperentangled state, requires the adoption of standard single photon detectors. The four polarization Bell states have been measured with average fidelity F=0.889±0.010F=0.889\pm0.010 by using the linear momentum degree of freedom as the ancilla. The feasibility of the scheme has been characterized as a function of the purity of momentum entanglement.Comment: 4 pages, v2, comments adde

    All non-classical correlations can be activated into distillable entanglement

    Full text link
    We devise a protocol in which general non-classical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all non-classical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system and local ancillae in our protocol. We emphasize the key role of state mixedness in maximizing non-classicality: Mixed entangled states can be arbitrarily more non-classical than separable and pure entangled states.Comment: 4+4 pages, 1 figure. Published versio

    Experimental reversion of the optimal quantum cloning and flipping processes

    Full text link
    The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and non-linear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication and feedforward. This significant teleportation-like method demonstrates how the information is preserved during the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multi-partite quantum cryptography.Comment: 10 pages, 3 figure

    Characterizing quantumness via entanglement creation

    Full text link
    In [M. Piani et al., arXiv:1103.4032 (2011)] an activation protocol was introduced which maps the general non-classical (multipartite) correlations between given systems into bipartite entanglement between the systems and local ancillae by means of a potentially highly entangling interaction. Here, we study how this activation protocol can be used to entangle the starting systems themselves via entanglement swapping through a measurement on the ancillae. Furthermore, we bound the relative entropy of quantumness (a naturally arising measure of non-classicality in the scheme of Piani et al. above) for a special class of separable states, the so-called classical-quantum states. In particular, we fully characterize the classical-quantum two-qubit states that are maximally non-classical.Comment: 13 pages, 1 figure, submitted to special issue of IJQ

    Phase-Covariant Quantum Benchmarks

    Full text link
    We give a quantum benchmark for teleportation and quantum storage experiments suited for pure and mixed test states. The benchmark is based on the average fidelity over a family of phase-covariant states and certifies that an experiment can not be emulated by a classical setup, i.e., by a measure-and-prepare scheme. We give an analytical solution for qubits, which shows important differences with standard state estimation approach, and compute the value of the benchmark for coherent and squeezed states, both pure and mixed.Comment: 4 pages, 2 figure

    Conditional beam splitting attack on quantum key distribution

    Get PDF
    We present a novel attack on quantum key distribution based on the idea of adaptive absorption [calsam01]. The conditional beam splitting attack is shown to be much more efficient than the conventional beam spitting attack, achieving a performance similar to the, powerful but currently unfeasible, photon number splitting attack. The implementation of the conditional beam splitting attack, based solely on linear optical elements, is well within reach of current technology.Comment: Submitted to Phys. Rev.

    Growth of graph states in quantum networks

    Full text link
    We propose a scheme to distribute graph states over quantum networks in the presence of noise in the channels and in the operations. The protocol can be implemented efficiently for large graph sates of arbitrary (complex) topology. We benchmark our scheme with two protocols where each connected component is prepared in a node belonging to the component and subsequently distributed via quantum repeaters to the remaining connected nodes. We show that the fidelity of the generated graphs can be written as the partition function of a classical Ising-type Hamiltonian. We give exact expressions of the fidelity of the linear cluster and results for its decay rate in random graphs with arbitrary (uncorrelated) degree distributions.Comment: 16 pages, 7 figure
    corecore