42 research outputs found

    EASIROC, an Easy & Versatile ReadOut Device for SiPM

    Get PDF
    AbstractEASIROC, standing for Extended Analogue Si-pm Integrated ReadOut Chip is a 32 channels fully analogue front end ASIC dedicated to readout SiPM detectors. This low power and highly versatile ASIC was developed from the chip SPIROC[1] which has been designed for the Analogue Hadronic Calorimeter foreseen at the International Linear Collider. EASIROC integrates a 4.5V range 8-bit DAC per channel for individual SIPM gain adjustment. A multiplexed charge measurement from 160 fC up to 320 pC is available thanks to 2 analogue outputs. These charge paths are made of 2 variable gain preamplifiers followed by 2 tuneable shapers and a track and hold. A trigger path integrates a fast shaper followed by a discriminator the threshold of which is set by an integrated 10-bit DAC. These 32 trigger outputs can be used for timing measurements. The power consumption is lower than 5 mW/channel and unused features can be powered OFF to decrease the power. The chip has been designed in AMS 0.35ÎĽm SiGe technology and 4000 dies have been produced in 2010. Its versatility allows its use in many photo detector experiments and is already used for PEBS, MuRAY, J-PARC and medical imaging

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore