11,909 research outputs found

    Critical behavior of vector models with cubic symmetry

    Full text link
    We report on some results concerning the effects of cubic anisotropy and quenched uncorrelated impurities on multicomponent spin models. The analysis of the six-loop three-dimensional series provides an accurate description of the renormalization-group flow.Comment: 6 pages. Talk given at the V International Conference Renormalization Group 2002, Strba, Slovakia, March 10-16 200

    Entanglement spectrum of random-singlet quantum critical points

    Full text link
    The entanglement spectrum, i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix, contains more information than the conventional entanglement entropy and has been studied recently in several many-particle systems. We compute the disorder-averaged entanglement spectrum, in the form of the disorder-averaged moments of the reduced density matrix, for a contiguous block of many spins at the random-singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model. Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on the geometry of the Hilbert space partition is quite different than for conformally invariant critical points.Comment: 11 pages, 10 figure

    Corrections to scaling in entanglement entropy from boundary perturbations

    Full text link
    We investigate the corrections to scaling of the Renyi entropies of a region of size l at the end of a semi-infinite one-dimensional system described by a conformal field theory when the corrections come from irrelevant boundary operators. The corrections from irrelevant bulk operators with scaling dimension x have been studied by Cardy and Calabrese (2010), and they found not only the expected corrections of the form l^(4-2x) but also unusual corrections that could not have been anticipated by finite-size scaling arguments alone. However, for the case of perturbations from irrelevant boundary operators we find that the only corrections that can occur to leading order are of the form l^(2-2x_b) for boundary operators with scaling dimension x_b < 3/2, and l^(-1) when x_b > 3/2. When x_b=3/2 they are of the form l^(-1)log(l). A marginally irrelevant boundary perturbation will give leading corrections going as log(l)^(-3). No unusual corrections occur when perturbing with a boundary operator.Comment: 8 pages. Minor improvements and updated references. Published versio

    Entanglement Entropy in Extended Quantum Systems

    Full text link
    After a brief introduction to the concept of entanglement in quantum systems, I apply these ideas to many-body systems and show that the von Neumann entropy is an effective way of characterising the entanglement between the degrees of freedom in different regions of space. Close to a quantum phase transition it has universal features which serve as a diagnostic of such phenomena. In the second part I consider the unitary time evolution of such systems following a `quantum quench' in which a parameter in the hamiltonian is suddenly changed, and argue that finite regions should effectively thermalise at late times, after interesting transient effects.Comment: 6 pages. Plenary talk delivered at Statphys 23, Genoa, July 200

    Universal parity effects in the entanglement entropy of XX chains with open boundary conditions

    Full text link
    We consider the Renyi entanglement entropies in the one-dimensional XX spin-chains with open boundary conditions in the presence of a magnetic field. In the case of a semi-infinite system and a block starting from the boundary, we derive rigorously the asymptotic behavior for large block sizes on the basis of a recent mathematical theorem for the determinant of Toeplitz plus Hankel matrices. We conjecture a generalized Fisher-Hartwig form for the corrections to the asymptotic behavior of this determinant that allows the exact characterization of the corrections to the scaling at order o(1/l) for any n. By combining these results with conformal field theory arguments, we derive exact expressions also in finite chains with open boundary conditions and in the case when the block is detached from the boundary.Comment: 24 pages, 9 figure

    Resolving intertracer inconsistencies in soil ingestion estimation.

    Get PDF
    In this article we explore sources and magnitude of positive and negative error in soil ingestion estimates for children on a subject-week and trace element basis. Errors varied among trace elements. Yttrium and zirconium displayed predominantly negative error; titanium and vanadium usually displayed positive error. These factors lead to underestimation of soil ingestion estimates by yttrium and zirconium and a large overestimation by vanadium. The most reliable tracers for soil ingestion estimates were aluminum, silicon, and yttrium. However, the most reliable trace element for a specific subject-day (or week) would be the element with the least error during that time period. The present analysis replaces our previous recommendations that zirconium and titanium are the most reliable trace elements in estimating soil ingestion by children. This report identifies limitations in applying the biostatistical model based on data for adults to data for children. The adult-based model used data less susceptible to negative bias and more susceptible to source error (positive bias) for titanium and vanadium than the data for children. These factors contributed significantly to inconsistencies in model predictions of soil ingestion rates for children. Correction for error at the subject-day level provides a foundation for generation of subject-specific daily soil ingestion distributions and for linking behavior to soil ingestion

    Entanglement entropy of random quantum critical points in one dimension

    Get PDF
    For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.Comment: 4 pages, 3 figure

    Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations

    Full text link
    Many alternative formulations of Einstein's evolution have lately been examined, in an effort to discover one which yields slow growth of constraint-violating errors. In this paper, rather than directly search for well-behaved formulations, we instead develop analytic tools to discover which formulations are particularly ill-behaved. Specifically, we examine the growth of approximate (geometric-optics) solutions, studied only in the future domain of dependence of the initial data slice (e.g. we study transients). By evaluating the amplification of transients a given formulation will produce, we may therefore eliminate from consideration the most pathological formulations (e.g. those with numerically-unacceptable amplification). This technique has the potential to provide surprisingly tight constraints on the set of formulations one can safely apply. To illustrate the application of these techniques to practical examples, we apply our technique to the 2-parameter family of evolution equations proposed by Kidder, Scheel, and Teukolsky, focusing in particular on flat space (in Rindler coordinates) and Schwarzchild (in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.

    Evolution of the fine-structure constant in runaway dilaton models

    Get PDF
    We study the detailed evolution of the fine-structure constant α\alpha in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α\alpha measurements and discuss ways to distinguish it from alternative models for varying α\alpha. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical Λ\LambdaCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α\alpha measurements, will thus dramatically constrain these scenarios.Comment: 11 pages, 4 figure

    Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States

    Full text link
    We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to significantly reduce the computer resources required. This modification is based on a principle of "observing" the system outside the light-cone. We apply this method to study spin relaxation in systems started out of equilibrium with initial conditions that give rise to very rapid entanglement growth. We also show that it is possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light-cone naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the system size that one can obtain compared to direct simulation. We then consider a different problem of thermal properties of disordered spin chains and use quantum belief propagation to average over different configurations. We test this algorithm on one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
    • …
    corecore