117 research outputs found

    Anatomical Regurgitant Orifice Detection and Quantification from 3-D Echocardiographic Images

    Get PDF
    The vena contracta and effective regurgitant orifice area (EROA) are currently used for the clinical assessment of mitral regurgitation (MR) from 2-D color Doppler imaging. In addition to being highly user dependent and having low repeatability, these methods do not represent accurately the anatomic regurgitant orifice (ARO), which affects the adequate assessment of MR patients. We propose a novel method for semi-automatic detection and quantitative assessment of the 3-D ARO shape from 3-D transesophageal echocardiographic images. The algorithm was tested on a set of 25 patients with MR, and compared with EROA for validation. Results indicate the robustness of the proposed approach, with low variability in relation to different settings of user-defined segmentation parameters. Although EROA and ARO exhibited a good correlation (r = 0.8), relatively large biases were measured, indicating that EROA probably underestimates the real shape and size of the regurgitant orifice. Along with the higher reproducibility of the proposed approach, this highlights the limitations of current clinical approaches and underlines the importance of accurate assessment of the ARO shape for diagnosis and treatment in MR patients

    Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images

    Get PDF
    Purpose: The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. Materials and Methods: The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. Results: All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Conclusions: Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches

    Circadian modulation on T-wave alternans activity in chronic heart failure patients

    Get PDF
    Average TWA activity has been shown to be an independent predictor of sudden cardiac death (SCD) in chronic heart failure (CHF) patients. However, the influence of circadian rhythms on TWA remains understudied. In this work, we assessed circadian TWA changes in a CHF population and evaluated whether the prognostic value of TWA indices is sensitive to the circadian pattern. Holter ECG recordings from 626 consecutive CHF patients (52 SCD) were analyzed. The index of average alternans (IAA), quantifying the average TWA level, was measured in 4 consecutive 6-hour intervals using a multilead fully-automated method. Survival analysis was performed considering SCD as an independent endpoint. IAA changed along the day, with statistically significant lower values during the night than during daytime. This pattern is similar to the one observed in the mean heart rate (HR). However, a low correlation (r=.18) was found between IAA and HR in windows of 128 beats. After dichotomization of patients based on the third quartile of IAA indices, IAA indices computed between hours 06-12 (IAA06-12) and 18-24 (IAA18-24) successfully predicted SCD (Hazard Ratio, HaR:2.34(1.33-4.13)per µV, andHaR:1.87(1.04-3.36) per µV, respectively). In conclusion, circadian variation should be considered for SCD risk prediction

    Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Get PDF
    Isolatedepisodesofheartrhythmdisordershavebeenreportedduring40yearsofspaceflight,triggeringresearchtoevaluatetheriskofdevelopinglife-threateningarrhythmiasinducedbyprolongedexposuretoweightlessness.Infact,theseeventscouldcompromiseastronautperformanceduringexploratorymissions,aswellasposeatrisktheastronauthealth,duetolimitedoptionsofcareonboardtheInternationalSpaceStation.Startingfromoriginalobservations,thisminireviewwillexplorethelatestresearchinthisfield,consideringresultsobtainedbothduringspaceflightandonEarth,thelatterbysimulatinglong-termexposuretomicrogravitybyhead-downbedrestmaneuverinordertoelicitcardiovasculardeconditioningonnormalvolunteers

    Evaluation of T-wave alternans activity under stress conditions after 5 d and 21 d of sedentary head-down bed rest

    Get PDF
    It is well known that prolonged microgravity leads to cardiovascular deconditioning, inducing significant changes in autonomic control of the cardiovascular system. This may adversely influence cardiac repolarization, and provoke cardiac rhythm disturbances. T-wave alternans (TWA), reflecting temporal and spatial repolarization heterogeneity, could be affected. The aim of this work was to test the hypothesis that 5 d and 21 d head-down (-6°) bed rest (HDBR) increases TWA, thus suggesting a higher underlying electrical instability and related arrhythmogenic risk.Forty-four healthy male volunteers were enrolled in the experiments as part of the European Space Agency's HDBR studies. High-fidelity ECG was recorded during orthostatic tolerance (OT) and aerobic power (AP) tests, before (PRE) and after HDBR (POST). A multilead scheme for TWA amplitude estimation was used, where non-normalized and T-wave amplitude normalized TWA indices were computed. In addition, spectral analysis of heart rate variability during OT was assessed.Both 5 d and 21 d HDBR induced a reduction in orthostatic tolerance time (OTT), as well as a decrease in maximal oxygen uptake and reserve capacity, thus suggesting cardiovascular deconditioning. However, TWA indices were found not to increase. Interestingly, subjects with lower OTT after 5 d HDBR also showed higher TWA during recovery after OT testing, associated with unbalanced sympathovagal response, even before the HDBR. In contrast with previous observations, augmented ventricular heterogeneity related to 5 d and 21 d HDBR was not sufficient to increase TWA under stress conditions

    Six Drivers to Face the XXI Century Challenges and Build the New Healthcare System: "La Salute in Movimento" Manifesto

    Get PDF
    : The aging of the population, the burden of chronic diseases, possible new pandemics are among the challenges for healthcare in the XXI century. To face them, technological innovations and the national recovery and resilience plan within the European Union can represent opportunities to implement changes and renovate the current healthcare system in Italy, in an effort to guarantee equal access to health services. Considering such scenario, a panel of Italian experts gathered in a multidisciplinary Think Tank to discuss possible design of concepts at the basis of a new healthcare system. These ideas were summarized in a manifesto with six drivers for change: vision, governance, competence, intelligence, humanity and relationship. Each driver was linked to an action to actively move toward a new healthcare system based on trust between science, citizens and institutions
    • …
    corecore