29 research outputs found

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations

    Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Get PDF
    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF
    Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies

    Intraerythrocyte nonprotein-bound iron and plasma malondialdehyde in the hypoxic newborn

    No full text
    Intraerythrocyte nonprotein-bound iron (INPBI), malondialdehyde (MDA), and hypoxanthine plasma levels (HxPL), were determined by high-pressure liquid chromatography in 138 randomly selected newborn infants with gestational ages ranging from 23 to 42 weeks at birth and on fourth day of life. MDA plasma levels were significantly higher in cord and fourth-day blood samples of preterm babies than term infants as well as babies born by emergency Caesarean section than babies born by vaginal delivery and in intubated than in nonintubated newborns. Highly significant correlations both in cord blood and fourth-day blood samples were observed between MDA plasma levels and gestational age, birth weight, Apgar score at 1 min and 5 min, HxPL, pH, base deficit, and INPBI content. Multiple regression analysis identified HxPL as the best single predictor of MDA plasma levels in cord blood, and INPBI content in fourth-day blood as the best single predictor of MDA plasma levels in fourth-day blood. The results indicate that red cells and plasma lipoproteins are a common target of free radical-induced oxidative stress during hypoxia

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity.

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations

    X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats

    No full text
    We have identified a novel gene, transducin (β)-like 1 (TBL1), in the Xp22.3 genomic region, that shows high homology with members of the WD-40- repeat protein family. The gene contains 18 exons spanning ~150 kb of the genomic region adjacent to the ocular albinism gene (OA1) on the telomeric side. However, unlike OA1, TBL1 is transcribed from telomere to centromere. Northern analysis indicates that TBL1 is ubiquitously expressed, with two transcripts of ~2.1 kb and 6.0 kb. The open reading frame encodes a 526- amino acid protein, which shows the presence of six β-transducin repeats (WD-40 motif) in the C-terminal domain. The homology with known β-subunits of G proteins and other WD-40-repeat containing proteins is restricted to the WD-40 motif. Genomic analysis revealed that the gene is either partly or entirely deleted in patients carrying Xp22.3 terminal deletions. The complexity of the contiguous gene-syndrome phenotype shared by these patients depends on the number of known disease genes involved in the deletions. Interestingly, one patient carrying a microinterstitial deletion involving the 3' portion of both TBL1 and OA1 shows the OA1 phenotype associated with X-linked late-onset sensorineural deafness. We postulate an involvement of TBL1 in the pathogenesis of the ocular albinism with late-onset sensorineural deafness phenotype

    X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats.

    No full text
    We have identified a novel gene, transducin (beta)-like 1 (TBL1), in the Xp22.3 genomic region, that shows high homology with members of the WD-40-repeat protein family. The gene contains 18 exons spanning approximately 150 kb of the genomic region adjacent to the ocular albinism gene (OA1) on the telomeric side. However, unlike OA1, TBL1 is transcribed from telomere to centromere. Northern analysis indicates that TBL1 is ubiquitously expressed, with two transcripts of approximately 2.1 kb and 6.0 kb. The open reading frame encodes a 526-amino acid protein, which shows the presence of six beta-transducin repeats (WD-40 motif) in the C-terminal domain. The homology with known beta-subunits of G proteins and other WD-40-repeat containing proteins is restricted to the WD-40 motif. Genomic analysis revealed that the gene is either partly or entirely deleted in patients carrying Xp22.3 terminal deletions. The complexity of the contiguous gene-syndrome phenotype shared by these patients depends on the number of known disease genes involved in the deletions. Interestingly, one patient carrying a microinterstitial deletion involving the 3' portion of both TBL1 and OA1 shows the OA1 phenotype associated with X-linked late-onset sensorineural deafness. We postulate an involvement of TBL1 in the pathogenesis of the ocular albinism with late-onset sensorineural deafness phenotype
    corecore