13 research outputs found

    EEG study on affective valence elicited by novel and familiar pictures using ERD/ERS and SVM-RFE

    No full text
    EEG signals have been widely explored in emotional processing analyses, both in time and frequency domains. However, in such studies, habituation phenomenon is barely considered in the discrimination of different emotional responses. In this work, spectral features of the event-related potentials (ERPs) are studied by means of event-related desynchronization/synchronization computation. In order to determine the most relevant ERP features for distinguishing how positive and negative affective valences are processed within the brain, support vector machine-recursive feature elimination is employed. The proposed approach was applied for investigating in which way the familiarity of stimuli affects the affective valence processing as well as which frequency bands and scalp regions are more involved in this process. In a group composed of young adult women, results prove that parietooccipital region and theta band are especially involved in the processing of novelty in emotional stimuli

    Emotional states detection approaches based on physiological signals for healthcare applications: A review

    No full text
    Mood disorders, anxiety, depression, and stress affect people’s quality of life and increase the vulnerability to diseases and infections. Depression, e.g., can carry undesirable consequences such as death. Hence, emotional states detection approaches using wearable technology are gaining interest in the last few years. Emerging wearable devices allow monitoring different physiological signals in order to extract useful information about people’s health status and provide feedback about their health condition. Wearable applications include e.g., patient monitoring, stress detection, fitness monitoring, wellness monitoring, and assisted living for elderly people, to name a few. This increased interests in wearable applications have allowed the development of new approaches to assist people in everyday activities and emergencies that can be incorporated into the smart city concept. Accurate emotional state detection approaches will allow an effective assistance, thus improving people’s quality of life and well-being. With these issues in mind, this chapter discusses existing emotional states’ approaches using machine and/or deep learning techniques, the most commonly used physiological signals in these approaches, existing physiological databases for emotion recognition, and highlights challenges and future research directions in this field. © Springer Nature Switzerland AG 2020
    corecore