55 research outputs found

    Microwave amplification with nanomechanical resonators

    Full text link
    Sensitive measurement of electrical signals is at the heart of modern science and technology. According to quantum mechanics, any detector or amplifier is required to add a certain amount of noise to the signal, equaling at best the energy of quantum fluctuations. The quantum limit of added noise has nearly been reached with superconducting devices which take advantage of nonlinearities in Josephson junctions. Here, we introduce a new paradigm of amplification of microwave signals with the help of a mechanical oscillator. By relying on the radiation pressure force on a nanomechanical resonator, we provide an experimental demonstration and an analytical description of how the injection of microwaves induces coherent stimulated emission and signal amplification. This scheme, based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices, and, at the same time, has a high potential to reach quantum limited operation. With a measured signal amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave amplification is feasible in various applications involving integrated electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main text), 18 pages, 6 figures (supplementary information

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure

    Back-action Evading Measurements of Nanomechanical Motion

    Get PDF
    When performing continuous measurements of position with sensitivity approaching quantum mechanical limits, one must confront the fundamental effects of detector back-action. Back-action forces are responsible for the ultimate limit on continuous position detection, can also be harnessed to cool the observed structure, and are expected to generate quantum entanglement. Back-action can also be evaded, allowing measurements with sensitivities that exceed the standard quantum limit, and potentially allowing for the generation of quantum squeezed states. We realize a device based on the parametric coupling between an ultra-low dissipation nanomechanical resonator and a microwave resonator. Here we demonstrate back-action evading (BAE) detection of a single quadrature of motion with sensitivity 4 times the quantum zero-point motion, back-action cooling of the mechanical resonator to n = 12 quanta, and a parametric mechanical pre-amplification effect which is harnessed to achieve position resolution a factor 1.3 times quantum zero-point motion.Comment: 19 pages (double-spaced) including 4 figures and reference

    Josephson junction microwave amplifier in self-organized noise compression mode

    Get PDF
    The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation

    Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas

    Get PDF
    Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign

    Observation of strong coupling between a micromechanical resonator and an optical cavity field

    Full text link
    Achieving coherent quantum control over massive mechanical resonators is a current research goal. Nano- and micromechanical devices can be coupled to a variety of systems, for example to single electrons by electrostatic or magnetic coupling, and to photons by radiation pressure or optical dipole forces. So far, all such experiments have operated in a regime of weak coupling, in which reversible energy exchange between the mechanical device and its coupled partner is suppressed by fast decoherence of the individual systems to their local environments. Controlled quantum experiments are in principle not possible in such a regime, but instead require strong coupling. So far, this has been demonstrated only between microscopic quantum systems, such as atoms and photons (in the context of cavity quantum electrodynamics) or solid state qubits and photons. Strong coupling is an essential requirement for the preparation of mechanical quantum states, such as squeezed or entangled states, and also for using mechanical resonators in the context of quantum information processing, for example, as quantum transducers. Here we report the observation of optomechanical normal mode splitting, which provides unambiguous evidence for strong coupling of cavity photons to a mechanical resonator. This paves the way towards full quantum optical control of nano- and micromechanical devices.Comment: Published versio

    Nanomechanical motion measured with precision beyond the standard quantum limit

    Full text link
    Nanomechanical oscillators are at the heart of ultrasensitive detectors of force, mass and motion. As these detectors progress to even better sensitivity, they will encounter measurement limits imposed by the laws of quantum mechanics. For example, if the imprecision of a measurement of an oscillator's position is pushed below the standard quantum limit (SQL), quantum mechanics demands that the motion of the oscillator be perturbed by an amount larger than the SQL. Minimizing this quantum backaction noise and nonfundamental, or technical, noise requires an information efficient measurement. Here we integrate a microwave cavity optomechanical system and a nearly noiseless amplifier into an interferometer to achieve an imprecision below the SQL. As the microwave interferometer is naturally operated at cryogenic temperatures, the thermal motion of the oscillator is minimized, yielding an excellent force detector with a sensitivity of 0.51 aN/rt(Hz). In addition, the demonstrated efficient measurement is a critical step towards entangling mechanical oscillators with other quantum systems.Comment: 5 pages, 4 figure

    Dynamical decoupling and noise spectroscopy with a superconducting flux qubit

    Full text link
    The characterization and mitigation of decoherence in natural and artificial two-level systems (qubits) is fundamental to quantum information science and its applications. Decoherence of a quantum superposition state arises from the interaction between the constituent system and the uncontrolled degrees of freedom in its environment. Within the standard Bloch-Redfield picture of two-level system dynamics, qubit decoherence is characterized by two rates: a longitudinal relaxation rate Gamma1 due to the exchange of energy with the environment, and a transverse relaxation rate Gamma2 = Gamma1/2 + Gamma_phi which contains the pure dephasing rate Gamma_phi. Irreversible energy relaxation can only be mitigated by reducing the amount of environmental noise, reducing the qubit's internal sensitivity to that noise, or through multi-qubit encoding and error correction protocols (which already presume ultra-low error rates). In contrast, dephasing is in principle reversible and can be refocused dynamically through the application of coherent control pulse methods. In this work we demonstrate how dynamical-decoupling techniques can moderate the dephasing effects of low-frequency noise on a superconducting qubit with energy-relaxation time T1 = 1/Gamma1 = 12 us. Using the CPMG sequence with up to 200 pi-pulses, we demonstrate a 50-fold improvement in the transverse relaxation time T2 over its baseline value. We observe relaxation-limited times T2(CPMG) = 23 us = 2 T1 resulting from CPMG-mediated Gaussian pure-dephasing times in apparent excess of 100 us. We leverage the filtering property of this sequence in conjunction with Rabi and energy relaxation measurements to facilitate the spectroscopy and reconstruction of the environmental noise power spectral density.Comment: 21 pages (incl. 11-page appendix); 4 (+7) figure

    Nitric Oxide Induces Cell Death by Regulating Anti-Apoptotic BCL-2 Family Members

    Get PDF
    Nitric oxide (NO) activates the intrinsic apoptotic pathway to induce cell death. However, the mechanism by which this pathway is activated in cells exposed to NO is not known. Here we report that BAX and BAK are activated by NO and that cytochrome c is released from the mitochondria. Cells deficient in Bax and Bak or Caspase-9 are completely protected from NO-induced cell death. The individual loss of the BH3-only proteins, Bim, Bid, Puma, Bad or Noxa, or Bid knockdown in Bim−/−/Puma−/− MEFs, does not prevent NO-induced cell death. Our data show that the anti-apoptotic protein MCL-1 undergoes ASK1-JNK1 mediated degradation upon exposure to NO, and that cells deficient in either Ask1 or Jnk1 are protected against NO-induced cell death. NO can inhibit the mitochondrial electron transport chain resulting in an increase in superoxide generation and peroxynitrite formation. However, scavengers of ROS or peroxynitrite do not prevent NO-induced cell death. Collectively, these data indicate that NO degrades MCL-1 through the ASK1-JNK1 axis to induce BAX/BAK-dependent cell death

    Additive Antinociceptive Effects of a Combination of Vitamin C and Vitamin E after Peripheral Nerve Injury

    Get PDF
    Accumulating evidence indicates that increased generation of reactive oxygen species (ROS) contributes to the development of exaggerated pain hypersensitivity during persistent pain. In the present study, we investigated the antinociceptive efficacy of the antioxidants vitamin C and vitamin E in mouse models of inflammatory and neuropathic pain. We show that systemic administration of a combination of vitamins C and E inhibited the early behavioral responses to formalin injection and the neuropathic pain behavior after peripheral nerve injury, but not the inflammatory pain behavior induced by Complete Freund's Adjuvant. In contrast, vitamin C or vitamin E given alone failed to affect the nociceptive behavior in all tested models. The attenuated neuropathic pain behavior induced by the vitamin C and E combination was paralleled by a reduced p38 phosphorylation in the spinal cord and in dorsal root ganglia, and was also observed after intrathecal injection of the vitamins. Moreover, the vitamin C and E combination ameliorated the allodynia induced by an intrathecally delivered ROS donor. Our results suggest that administration of vitamins C and E in combination may exert synergistic antinociceptive effects, and further indicate that ROS essentially contribute to nociceptive processing in special pain states
    • …
    corecore