13 research outputs found

    Moving Just Like You: Motor Interference Depends on Similar Motility of Agent and Observer

    Get PDF
    Recent findings in neuroscience suggest an overlap between brain regions involved in the execution of movement and perception of another’s movement. This so-called “action-perception coupling” is supposed to serve our ability to automatically infer the goals and intentions of others by internal simulation of their actions. A consequence of this coupling is motor interference (MI), the effect of movement observation on the trajectory of one’s own movement. Previous studies emphasized that various features of the observed agent determine the degree of MI, but could not clarify how human-like an agent has to be for its movements to elicit MI and, more importantly, what ‘human-like’ means in the context of MI. Thus, we investigated in several experiments how different aspects of appearance and motility of the observed agent influence motor interference (MI). Participants performed arm movements in horizontal and vertical directions while observing videos of a human, a humanoid robot, or an industrial robot arm with either artificial (industrial) or human-like joint configurations. Our results show that, given a human-like joint configuration, MI was elicited by observing arm movements of both humanoid and industrial robots. However, if the joint configuration of the robot did not resemble that of the human arm, MI could longer be demonstrated. Our findings present evidence for the importance of human-like joint configuration rather than other human-like features for perception-action coupling when observing inanimate agents

    Where robots and virtual agents meet : a survey of social interaction across Milgram's Reality-Virtuality Continuum

    No full text
    Traditionally, social interaction research has concentrated on either fully virtually embodied agents (e.g. embodied conversational agents) or fully physically embodied agents (e.g. robots). For some time, however, both areas have started augmenting their agents’ capabilities for social interaction using ubiquitous and intelligent environments. We are placing different agent systems for social interaction along Milgram’s Reality-Virtuality Continuum—according to the degree they are embodied in a physical, virtual or mixed reality environment—and show systems that follow the next logical step in this progression, namely social interaction in the middle of Milgram’s continuum, that is, agents richly embodied in the physical and virtual world. This paper surveys the field of social interaction research with embodied agents with a particular view towards their embodiment forms and highlights some of the advantages and issues associated with the very recent field of social interaction with mixed reality agents.Science Foundation Irelan
    corecore