3 research outputs found

    Wyoming craton mantle lithosphere: reconstructions based on xenocrysts from Sloan and Kelsey Lake kimberlites

    No full text
    Book synopsis: The structure of the lithospheric mantle of the Wyoming craton beneath two Paleozoic kimberlite pipes, Sloan and Kelsey Lake 1 in Colorado, was reconstructed using single-grain thermobarometry for a large data set (>2,600 EPMA analyses of xenocrysts and mineral intergrowths). Pyrope compositions from both pipes relate to the lherzolitic field (up to 14 wt% Cr2O3) with a few deviations in CaO to harzburgitic field for KL-1 garnets. Clinopyroxene variations (Cr-diopsides and omphacites) from the Sloan pipe show similarities with those from Daldyn kimberlites, Yakutia, and from kimberlites in the central part of the Slave craton, while KL-1 Cpx resemble those from the Alakit kimberlites in Yakutia that sample metasomatized peridotites. LAM ICP analyses recalculated to parental melts for clinopyroxenes from Sloan resemble contaminated protokimberlite melts, while clinopyroxenes from KL-1 show metasomatism by subduction fluids. Melts calculated from garnets from both pipes show peaks for Ba, Sr and U, and HFSE troughs, typical of subduction-related melts. Parental melts calculated for ilmenites from Sloan suggest derivation from highly differentiated melts, or melting of Ilm-bearing metasomatites, while those from Kelsey Lake do not display extreme HFSE enrichment. Three P-Fe# (where Fe# = Fe/(Fe + Mg) in atomic units) trends within the mantle lithosphere beneath Sloan have been obtained using monomineral thermobarometry. At the base, the trends reveal melt metasomatized (possibly sheared) peridotites (Fe# = 13–15 %), refertilized peridotites (Fe# = 10–11 %) and primary mantle peridotites (Fe# = 7–9 %). Anomalous heating was found at depths equivalent to 4.0 and 3.0–2.0 GPa. The mantle section beneath KL-1 is widely metasomatized with several stages of refertilization with dispersed Ilm–Cpx trends. The step-like subadibatic heating in the mantle column beneath the Sloan pipe is strong in the base and the middle part and weaker within 2–3 GPa. Heating beneath the KL-1 pipe is more evident in the base and middle part from 7.0 to 3.0 GPa

    Highly saline fluids from a subducting slab as the source for fluid-rich diamonds

    No full text
    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root1,2, as well as diamond formation3, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form4,5,6,7 and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid–rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite–eclogite lithosphere. Moreover, the chemistry of the parental saline fluids—especially their strontium isotopic compositions—and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle
    corecore