6,620 research outputs found

    The investigation of fibre reinforcement effects in thermoplastic materials: interfacial bond strength and fibre end parameter

    Get PDF
    Glass fibres used in the manufacture of fibre reinforced thermoplastic composites (FRTP) are normally sized with a film former which includes a silane coupling agent to improve the interfacial bond strength between glass fibre and matrix . However, during composite failure even an optimized interface cannot stop the initia tion of cracks at the fibre ends, which can lead to large transverse cracks in the matrix or failure by fibre pull-out. In order to help better understand the failure mechanisms of FRTP, thermoplastic microbond tests and photoelasticity experiments have been used to study the interface in model single fibre composites

    Seed dimorphism nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    Get PDF
    Background: Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects.Results: Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity.Conclusions: Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. © 2012 Wang et al.; licensee BioMed Central Ltd

    Repulsion and attraction in high Tc superconductors

    Full text link
    The influence of repulsion and attraction in high-Tc superconductors to the gap functions is studied. A systematic method is proposed to compute the gap functions using the irreducible representations of the point group. It is found that a pure s-wave superconductivity exists only at very low temperatures, and attractive potentials on the near shells significantly expand the gap functions and increase significantly the critical temperature of superconductivity. A strong on-site repulsion drives the A1gA_{1g} gap into a B1gB_{1g} gap. It is expected that superconductivity with the A1gA_{1g} symmetry reaches a high critical temperature due to the cooperation of the on-site and the next-nearest neighbor attractions.Comment: 4 pages, 5figure

    A nonextensive approach to Bose-Einstein condensation of trapped interacting boson gas

    Full text link
    In the Bose-Einstein condensation of interacting atoms or molecules such as 87Rb, 23Na and 7Li, the theoretical understanding of the transition temperature is not always obvious due to the interactions or zero point energy which cannot be exactly taken into account. The S-wave collision model fails sometimes to account for the condensation temperatures. In this work, we look at the problem within the nonextensive statistics which is considered as a possible theory describing interacting systems. The generalized energy Uq and the particle number Nq of boson gas are given in terms of the nonextensive parameter q. q>1 (q<1) implies repulsive (attractive) interaction with respect to the perfect gas. The generalized condensation temperature Tcq is derived versus Tc given by the perfect gas theory. Thanks to the observed condensation temperatures, we find q ~ 0.1 for 87Rb atomic gas, q ~ 0.95 for 7Li and q ~ 0.62 for 23Na. It is concluded that the effective interactions are essentially attractive for the three considered atoms, which is consistent with the observed temperatures higher than those predicted by the conventional theory

    Impurity and interface bound states in dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y superconductors

    Get PDF
    Motivated by recent discoveries of novel superconductors such as Nax_xCoO2y_2\cdot yH2_2O and Sr2_2RuO4_4, we analysize features of quasi-particle scattering due to impurities and interfaces for possible gapful dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y Cooper pairing. A bound state appears near a local impurity, and a band of bound states form near an interface. We obtained analytically the bound state energy, and calculated the space and energy dependent local density of states resolvable by high-resolution scanning tunnelling microscopy. For comparison we also sketch results of impurity and surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure

    Finite temperature properties of the 2D Kondo lattice model

    Full text link
    Using recently developed Lanczos technique we study finite-temperature properties of the 2D Kondo lattice model at various fillings of the conduction band. At half filling the quasiparticle gap governs physical properties of the chemical potential and the charge susceptibility at small temperatures. In the intermediate coupling regime quasiparticle gap scales approximately linearly with Kondo coupling. Temperature dependence of the spin susceptibility reveals the existence of two different temperature scales. A spin gap in the intermediate regime leads to exponential drop of the spin susceptibility at low temperatures. Unusual scaling of spin susceptibility is found for temperatures above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Nernst Effect in Electron-Doped Pr2x_{2-x}Cex_{x}CuO4_4

    Full text link
    The Nernst effect of Pr2x_{2-x}Cex_{x}CuO4_4 (x=0.13, 0.15, and 0.17) has been measured on thin film samples between 5-120 K and 0-14 T. In comparison to recent measurements on hole-doped cuprates that showed an anomalously large Nernst effect above the resistive Tc_c and Hc2_{c2} \cite{xu,wang1,wang2,capan}, we find a normal Nernst effect above Tc_c and Hc2_{c2} for all dopings. The lack of an anomalous Nernst effect in the electron-doped compounds supports the models that explain this effect in terms of amplitude and phase fluctuations in the hole-doped cuprates. In addition, the Hc2_{c2}(T) determined from the Nernst effect shows a conventional behavior for all dopings. The energy gap determined from Hc2_{c2}(0) decreases as the system goes from under-doping to over-dopingin agreement with the recent tunnelling experiments
    corecore