31 research outputs found

    Hyperon semileptonic decays and quark spin content of the proton

    Get PDF
    We investigate the hyperon semileptonic decays and the quark spin content of the proton ΔΣ\Delta \Sigma taking into account flavor SU(3) symmetry breaking. Symmetry breaking is implemented with the help of the chiral quark-soliton model in an approach, in which the dynamical parameters are fixed by the experimental data for six hyperon semileptonic decay constants. As a result we predict the unmeasured decay constants, particularly for Ξ0→Σ+\Xi^0 \to \Sigma^+, which will be soon measured and examine the effect of the SU(3) symmetry breaking on the spin content ΔΣ\Delta \Sigma of the proton. Unfortunately large experimental errors of Ξ−\Xi^- decays propagate in our analysis making ΔΣ\Delta \Sigma and Δs\Delta s practically undetermined. We conclude that statements concerning the values of these two quantities, which are based on the exact SU(3) symmetry, are premature. We stress that the meaningful results can be obtained only if the experimental errors for the Ξ\Xi decays are reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages, RevTex is used with 4 figures include

    Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments

    Get PDF
    The strange properties of the nucleon are investigated within the framework of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying the symmetry conserving SU(3) quantization. We present the form factors GE,M0(Q2)G^0_{E,M}(Q^2), GMZ(Q2)G^Z_M(Q^2) and the electric and magnetic strange form factors GE,Ms(Q2)G^s_{E,M}(Q^2) incorporating pion and kaon asymptotics. The results show a fairly good agreement with the recent experimental data from the SAMPLE and HAPPEX collaborations. We also present predictions for future measurements including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed. Accepted for publication in Phys.Rev.

    Electromagnetic Form Factors of the SU(3) Octet Baryons in the semibosonized SU(3) Nambu-Jona-Lasinio Model

    Get PDF
    The electromagnetic form factors of the SU(3) octet baryons are investigated in the semibosonized SU(3) Nambu--Jona-Lasinio model (chiral quark-soliton model). The rotational 1/Nc1/N_c and strange quark mass corrections in linear order are taken into account. The electromagnetic charge radii of the nucleon and magnetic moments are also evaluated. It turns out that the model is in a remarkable good agreement with the experimental data.Comment: RevTex is used. 37 pages. The final version to appear in Phys. Rev. D. 13 figures are include

    Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD

    Get PDF
    The low-lying eigenmodes of the Dirac operator associated with typical gauge field configurations in QCD encode, among other low-energy properties, the physics behind the solution to the UA(1)U_A(1) problem (i.e. the origin of the ηâ€Č\eta' mass), the nature of spontaneous chiral symmetry breaking, and the physics of string-breaking, quark-antiquark pair production, and the OZI rule. Moreover, the space-time chiral structure of these eigenmodes reflects the space-time topological structure of the underlying gauge field. We present evidence from lattice QCD on the local chiral structure of low Dirac eigenmodes leading to the conclusion that topological charge fluctuations of the QCD vacuum are not instanton-dominated. The result supports Witten's arguments that topological charge is produced by confinement-related gauge fluctuations rather than instantons.Comment: 35 pages, 11 figure

    Spectral quark model and low-energy hadron phenomenology

    Get PDF
    We propose a spectral quark model which can be applied to low energy hadronic physics. The approach is based on a generalization of the Lehmann representation of the quark propagator. We work at the one-quark-loop level. Electromagnetic and chiral invariance are ensured with help of the gauge technique which provides particular solutions to the Ward-Takahashi identities. General conditions on the quark spectral function follow from natural physical requirements. In particular, the function is normalized, its all positive moments must vanish, while the physical observables depend on negative moments and the so-called log-moments. As a consequence, the model is made finite, dispersion relations hold, chiral anomalies are preserved, and the twist expansion is free from logarithmic scaling violations, as requested of a low-energy model. We study a variety of processes and show that the framework is very simple and practical. Finally, incorporating the idea of vector-meson dominance, we present an explicit construction of the quark spectral function which satisfies all the requirements. The corresponding momentum representation of the resulting quark propagator exhibits only cuts on the physical axis, with no poles present anywhere in the complex momentum space. The momentum-dependent quark mass compares very well to recent lattice calculations. A large number of predictions and relations can be deduced from our approach for such quantities as the pion light-cone wave function, non-local quark condensate, pion transition form factor, pion valence parton distribution function, etc.Comment: revtex, 24 pages, 3 figure

    Effective chiral lagrangian in the chiral limit from the instanton vacuum

    Full text link
    We study the effective chiral Lagrangian in the chiral limit from the instanton vacuum. Starting from the nonlocal effective chiral action, we derive the effective chiral Lagrangian, using the derivative expansion to order O(p4)O(p^4) in the chiral limit. The low energy constants, L1L_1, L2L_2, and L3L_3 are determined and compared with various models and the corresponding empirical data. The results are in a good agreement with the data. We also discuss about the upper limit of the sigma meson, based on the present results.Comment: 14 pages, 5 figures, submitted to Phys.Rev.

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    Semileptonic decay constants of octet baryons in the chiral quark-soliton model

    Get PDF
    Based on the recent study of the magnetic moments and axial constants within the framework of the chiral quark-soliton model, we investigate the baryon semileptonic decay constants (f1,f2)(f_1,f_2) and (g1,g2)(g_1, g_2). Employing the relations between the diagonal transition matrix elements and off-diagonal ones in the vector and axial-vector channels, we obtain the ratios of baryon semileptonic decay constants f2/f1f_2/f_1 and g1/f1g_1/f_1. The F/DF/D ratio is also discussed and found that the value predicted by the present model naturally lies between that of the Skyrme model and that of the nonrelativistic quark model. The singlet axial constant gA(0)g^{(0)}_A can be expressed in terms of the F/DF/D ratio and gA(3)g^{(3)}_A in the present model and turns out to be small. The results are compared with available experimental data and found to be in good agreement with them. In addition, the induced pseudotensor coupling constants g2/f1g_2/f_1 are calculated, the SU(3) symmetry breaking being considered. The results indicate that the effect of SU(3) symmetry breaking might play an important role for some decay modes in hyperon semileptonic decay.Comment: 16 pages, RevTeX is used. No figure. Accepted for publication in Phys. Rev.

    The chirally-odd twist-3 distribution function e(x) in the chiral quark-soliton model

    Get PDF
    The chirally-odd twist-3 nucleon distribution e(x) is studied in the large-Nc limit in the framework of the chiral quark-soliton model at a low normalization point of about 0.6 GeV. The remarkable result is that in the model e(x) contains a delta-function-type singularity at x=0. The regular part of e(x) is found to be sizeable at the low scale of the model and in qualitative agreement with bag model calculations.Comment: 16 pages, 6 figures, revtex, Ref.[50] and footnote 3 adde

    Low Energy Chiral Lagrangian in Curved Space-Time from the Spectral Quark Model

    Full text link
    We analyze the recently proposed Spectral Quark Model in the light of Chiral Perturbation Theory in curved space-time. In particular, we calculate the chiral coefficients L1,...,L10L_1, ..., L_{10}, as well as the coefficients L11L_{11}, L12L_{12}, and L13L_{13}, appearing when the model is coupled to gravity. The analysis is carried for the SU(3) case. We analyze the pattern of chiral symmetry breaking as well as elaborate on the fulfillment of anomalies. Matching the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor and vector mesons, Mf0=Mf2=2MV=43/NcπfπM_{f_0}=M_{f_2}=\sqrt{2} M_V= 4 \sqrt{3 /N_c} \pi f_\pi. Finally, the large-NcN_c limit suggests the dual relations in the vector and scalar channels, MV=MS=26/NcπfπM_V=M_S= 2 \sqrt{6 /N_c} \pi f_\pi and S1/2=<r2>V1/2=2Nc/fπ=0.59fm^{1/2}_S = < r^2 >^{1/2}_V = 2 \sqrt{N_c} / f_\pi = 0.59 {\rm fm} .Comment: 18 pages, no figure
    corecore