3 research outputs found
Popular matchings in the weighted capacitated house allocation problem
We consider the problem of finding a popular matching in the <i>Weighted Capacitated House Allocation</i> problem (WCHA). An instance of WCHA involves a set of agents and a set of houses. Each agent has a positive weight indicating his priority, and a preference list in which a subset of houses are ranked in strict order. Each house has a capacity that indicates the maximum number of agents who could be matched to it. A matching M of agents to houses is popular if there is no other matching Mā² such that the total weight of the agents who prefer their allocation in Mā² to that in M exceeds the total weight of the agents who prefer their allocation in M to that in Mā². Here, we give an [FORMULA] algorithm to determine if an instance of WCHA admits a popular matching, and if so, to find a largest such matching, where C is the total capacity of the houses, n1 is the number of agents, and m is the total length of the agents' preference lists
Counting Popular Matchings in House Allocation Problems
We study the problem of counting the number of popular matchings in a given
instance. A popular matching instance consists of agents A and houses H, where
each agent ranks a subset of houses according to their preferences. A matching
is an assignment of agents to houses. A matching M is more popular than
matching M' if the number of agents that prefer M to M' is more than the number
of people that prefer M' to M. A matching M is called popular if there exists
no matching more popular than M. McDermid and Irving gave a poly-time algorithm
for counting the number of popular matchings when the preference lists are
strictly ordered.
We first consider the case of ties in preference lists. Nasre proved that the
problem of counting the number of popular matching is #P-hard when there are
ties. We give an FPRAS for this problem.
We then consider the popular matching problem where preference lists are
strictly ordered but each house has a capacity associated with it. We give a
switching graph characterization of popular matchings in this case. Such
characterizations were studied earlier for the case of strictly ordered
preference lists (McDermid and Irving) and for preference lists with ties
(Nasre). We use our characterization to prove that counting popular matchings
in capacitated case is #P-hard
Popular matchings in the marriage and roommates problems
Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching Mā² with the property that more applicants prefer their allocation in Mā² to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases