

Sng, C.T.S. and Manlove, D.F. (2010) Popular matchings in the weighted
capacitated house allocation problem. Journal of Discrete Algorithms, 8
(2). pp. 102-116. ISSN 1570-8667

http://eprints.gla.ac.uk/25731/

Deposited on: 07 April 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Popular Matchings in the

Weighted Capacitated House Allocation Problem∗

Colin T.S. Sng† and David F. Manlove‡

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {sngts,davidm}@dcs.gla.ac.uk.

Abstract

We consider the problem of finding a popular matching in the Weighted Capacitated
House Allocation problem (WCHA). An instance of WCHA involves a set of agents
and a set of houses. Each agent has a positive weight indicating his priority, and a
preference list in which a subset of houses are ranked in strict order. Each house has
a capacity that indicates the maximum number of agents who could be matched to
it. A matching M of agents to houses is popular if there is no other matching M ′

such that the total weight of the agents who prefer their allocation in M ′ to that in
M exceeds the total weight of the agents who prefer their allocation in M to that in
M ′. Here, we give an O(

√
Cn1 + m) algorithm to determine if an instance of WCHA

admits a popular matching, and if so, to find a largest such matching, where C is the
total capacity of the houses, n1 is the number of agents, and m is the total length of
the agents’ preference lists.

1 Introduction

An instance I of the Weighted Capacitated House Allocation problem (WCHA) involves a
set of agents A = {a1, a2, ..., an1

} and a set of houses H = {h1, h2, ..., hn2
}. Each agent

a ∈ A ranks in strict order a subset of H (the acceptable houses for a) represented by his
preference list. We also create a unique last resort house l(a) for each a and append l(a)
to a’s preference list. Every agent a also has a positive weight w(a) indicating a’s priority,
and we partition A into sets P1, P2, ..., Pk, such that the weight of agents in Pz is wz, and
w1 > w2 > ... > wk > 0. For each agent a ∈ A, we say that a has priority z if a ∈ Pz, and
we use P (a) to denote the priority of a. Each house hj ∈ H has a capacity cj ≥ 1 which
indicates the maximum number of agents that may be assigned to it.

The underlying graph of I is the bipartite graph G = (A,H ∪ L,E), where L is the
set of last resort houses, and E comprises all pairs (a, hj) such that house hj appears in
the preference list of agent a (note that this includes the pairs (a, l(a)) for each agent a.)
We let n = n1 + n2 and m = |E|. We assume that m ≥ max {n1, n2 + L}, i.e., no agent
has an empty preference list and each house is acceptable to at least one agent. We also
assume that cj ≤ n1 for each hj ∈ H. Let C =

∑n2

j=1 cj denote the sum of the capacities
of the houses.

A matching M in I is a subset of E such that (i) each agent is assigned to at most
one house in M , and (ii) each house hj ∈ H is assigned to at most cj agents in M .

∗A preliminary version of this paper appeared in Proceedings of ACiD 2007 [18].
†Supported by Department of Computing Science and ORSAS scholarships.
‡Supported by an RSE/Scottish Executive Personal Research Fellowship and by EPSRC grant

EP/E011993/1.

1

We say that a house hj ∈ H is full in M if |M(hj)| = cj , and undersubscribed in M if
|M(hj)| < cj . If an agent a ∈ A is matched in M , we denote by M(a) the house that a
is matched to in M . We define M(hj) to be the set of agents matched to hj in M (thus
M(hj) could be empty). Given two matchings M and M ′ in I, we say that an agent
a prefers M ′ to M if either (i) a is matched in M ′ and unmatched in M , or (ii) a is
matched in both M ′ and M and prefers M ′(a) to M(a). Let P (M ′,M) denote the set of
agents who prefer M ′ to M . Then, the satisfaction of M ′ with respect to M is defined
as sat(M ′,M) =

∑

a∈P (M ′,M) w(a) − ∑

a∈P (M,M ′) w(a). We say that M ′ is more popular

than M if sat(M ′,M) > 0. A matching M in I is popular if there is no other matching in
I that is more popular than M .

Motivation

WCHA is an example of a bipartite matching problem with one-sided preferences [1, 2,
10, 3]. These problems have applications in areas such as campus housing allocation in
US universities [1], hence the problem name; in assigning probationary teachers to their
first posts in Scotland; and in Amazon’s DVD rental service. The assignment of weights
to agents allows us to build up a spectrum of priority levels for them in the competition
for houses in situations where the total capacity of the houses is less than the number of
agents. In turn, this gives some agents a better chance of “doing well”. For instance, the
assignment of weights can enable DVD rental companies like Amazon to give priority to
those members who have paid more for privileged status whenever a certain title is limited
in stock. Alternatively, weights may be assigned to candidates in job markets based on
objective criteria such as academic results or relevant work experience.

A variety of optimality criteria have been defined for bipartite matching problems with
one-sided preferences. Gärdenfors [8] first introduced the notion of a popular matching
(referring to this concept as a majority assignment) in the context of the Stable Marriage
problem. We remark that the more popular than concept can be traced back even further
to the Condorcet voting protocol. Alternatively, Pareto optimality [1, 2] is often regarded
by economists as a fundamental property to be satisfied. A matching M is Pareto optimal
if there is no matching M ′ such that some agent prefers M ′ to M , and no agent prefers M
to M ′. Clearly a popular matching is Pareto optimal. Finally, a matching is rank-maximal
[10] if it assigns the maximum number of agents to their first-choice houses, and subject to
this, the maximum number of agents to their second-choice houses, and so on. However,
Pareto optimal matchings and rank-maximal matchings need not be popular.

Previous work

Popular matchings were first considered from an algorithmic point of view by Abraham et
al. [3] in the context of the House Allocation problem (HA) – the special case of WCHA
where each house has capacity 1 and each agent has the same priority. They gave an
instance of HA in which no popular matching exists and also noted that popular matchings
can have different sizes. The authors also formulated an O(n + m) algorithm for finding a
maximum cardinality popular matching (henceforth a maximum popular matching) if one
exists, given an instance of HA. They also described an O(

√
nm) algorithm for the case

where preferences may include ties, i.e., HA with Ties (HAT).
Several other papers have also focused on popular matchings. Chung [6] considered

popular matchings in instances of the Stable Roommates problem (a non-bipartite gener-
alisation of HA) and noted that a stable matching is popular, however the same need not
be true in the presence of ties. In the HA context, Mahdian [13] showed that a popular
matching exists with high probability when (i) preference lists are random, and (ii) the

2

number of houses is a small multiplicative factor larger than the number of agents. In the
context of HAT, Abraham and Kavitha [4] considered voting paths in relation to popu-
lar matchings in a dynamic matching market in which agents and houses can enter and
leave the market. Manlove and Sng [14] studied the Capacitated House Allocation problem
(CHA) – this is the special case of WCHA in which all agents have the same priority.
They gave an O(

√
Cn1 + m) algorithm for finding a (maximum) popular matching, if one

exists, when preferences are strict, and an O((
√

C + n1)m) algorithm when preferences
contain ties. Mestre [17] studied the Weighted House Allocation problem (WHA) – this is
the special case of WCHA in which all houses have unitary capacity. He gave an O(n+m)
algorithm for finding a (maximum) popular matching, if one exists, when preferences are
strict, and an O(min(k

√
n, n)m) algorithm when preferences contain ties. Kavitha and

Shah [12] gave an O(nω) randomized algorithm for finding a popular matching or reporting
that none exists, given an instance of HAT, where ω < 2.376 is the exponent of matrix
multiplication.

To cope with the possible non-existence of a popular matching, McCutchen [15] defined
two notions of a matching that is, in some sense, “as popular as possible”, namely a least-
unpopularity-factor matching and a least-unpopularity-margin matching, for instances of
HA and HAT. McCutchen proved that computing either type of matching is NP-hard,
even if preference lists are strictly ordered. Huang et al. [9] gave an O(

√
nm) algorithm

for finding a matching M with unpopularity factor 2, provided that a certain graph admits
a matching in which all agents are matched. They also generalised this result by describing
a sequence of graphs H2,H3, . . . ,Hr such that if Hr admits a matching in which all agents
are matched, a matching M can be computed in O(r

√
nm) time with unpopularity factor

at most r − 1 and unpopularity margin at most n(1 − 2
r
).

Recently, Kavitha and Nasre [11] gave an O(n2 + m) algorithm for the problem of
computing an optimal popular matching (assuming a popular matching exists), given an
instance of HA, where “optimal” includes the rank-maximal, fair (i.e., minimise the num-
ber of agents who obtain their rth choice house, and subject to this, minimise the number
who obtain their (r− 1)th choice, and so on, where r is the maximum length of an agent’s
preference list) and minimum cost (i.e., minimise the sum of the ranks of the agents’
assigned houses in their preference lists) criteria. McDermid and Irving [16] gave a char-
acterisation of the set of popular matchings for an HA instance in terms of the so-called
switching graph, which is computable in linear time from the preference lists. They showed
that this structure can be exploited to yield efficient algorithms for a range of associated
problems, including the counting and enumeration of the set of popular matchings, gen-
eration of a popular matching uniformly at random, finding all (agent, house) pairs that
can occur in a popular matching, and computing popular matchings that satisfy various
additional optimality criteria, including the rank-maximal, fair and minimum cost criteria
described above. The algorithm of McDermid and Irving [16] for computing a minimum
cost popular matching runs in O(n + m) time, whilst their algorithms for computing a
rank-maximal or a fair popular matching have O(n log n + m) complexity; each of these
running times improves on that of Kavitha and Nasre [11] for the same problems.

Our results

In this paper, we consider popular matchings in an instance I of WCHA (i.e., preference
lists are strict), which is a natural generalisation of the one-one WHA model. We give
a non-trivial extension of the results from [17] to WCHA. We first develop in Section
2 necessary conditions for a matching to be popular in a WCHA instance I. Then, in
Sections 3.1 and 3.2, we define a structure in the underlying graph of I that enables us to
identify certain edges that cannot belong to a popular matching, giving correctness proofs

3

Algorithm 1 Algorithm Label-f
1: for each hj ∈ H do

2: for i in 1..k do

3: fi,j := 0;
4: end for

5: end for

6: for each a ∈ P1 do

7: f(a) := first-ranked house hj on a’s preference list;
8: f1,j ++;
9: end for

10: for z in 2..k do

11: for each a ∈ Pz do

12: q := 1;
13: hj := house at position q on a’s preference list;

14: while (
∑z−1

p=1
fp,j ≥ cj) do

15: q ++;
16: hj := house at position q on a’s preference list;
17: end while

18: f(a) := hj ;
19: fz,j ++;
20: end for

21: end for

in Section 3.3. We then use these two results in conjunction to construct in Section 3.4
an O(

√
Cn1 + m) time algorithm for finding a popular matching in I or reporting that

none exists. In Section 3.5 we show how to modify this algorithm to compute a maximum
popular matching if one exists, without altering the time complexity. We remark that a
straightforward solution to the problem of finding a maximum popular matching in I may
be to use “cloning”. Informally, this entails creating cj clones for each house hj to obtain
an instance J of WHAT (WHA with ties), and then applying the algorithm of [17] for
WHAT to J . However, we will show in Section 3.6 that this approach leads to a slower
algorithm than our direct approach.

2 Characterising a popular matching

For each agent a ∈ A, we introduce the notion of a’s f -house and a’s s-house denoting
these by f(a) and s(a) respectively. Agent a prefers f(a) to s(a), and as we will show,
these are the only two houses to which a could be matched in a popular matching. We
use Algorithm Label-f shown in Algorithm 1 to define f(a) precisely (the definition of s(a)
will follow later in this section.)

Here, we will define the f -houses for all the agents in phases, with each phase corre-
sponding to a priority level Pz. Intuitively, during the course of the algorithm’s execution,
fi,j will denote the number of agents with priority i whose f -house is defined and equal
to hj . Initially, fi,j = 0 for all i (1 ≤ i ≤ k) and j (1 ≤ j ≤ n2). We then define the
f -house for each agent as follows. For every agent a ∈ P1, we let f(a) be the first-ranked
house hj on a’s preference list, and we call such a house an f1-house. Given 2 ≤ z ≤ k,
for every agent a ∈ Pz , we let f(a) be the most-preferred house hj on a’s preference list
such that

∑z−1
p=1 fp,j < cj – we call hj an fz-house. Clearly, the algorithm must terminate

due to the presence of a unique last resort house at the end of each agent’s preference
list. Once the algorithm has terminated, we let fi(hj) denote the set {a ∈ Pi : f(a) = hj}.
Then, fi,j = |fi(hj)| (possibly fi,j = 0). Here, and henceforth throughout this paper, any
reference to fi,j refers to the value of this variable upon termination of Algorithm Label-f.

4

Agent Priority Weight Pref list House Capacity
a1: 1 7 h1 h2 h3 h1 1
a2: 2 4 h1 h3 h4 h2 2
a3: 2 4 h3 h5 h3 2
a4: 3 2 h3 h1 h4 h5 h4 2
a5: 3 2 h1 h4 h5 h5 1
a6: 3 2 h4 h1 h2

Figure 1: An instance I1 of WCHA

It is straightforward to verify that Algorithm Label-f runs in O(m) time if we use
virtual initialisation (described in [5, p.149]) for the steps in lines 1-5. The example in
Figure 1 gives an illustration of the definition of f -houses. Here, the f -houses of the
agents are as follows: f(a1) = h1, f(a2) = h3, f(a3) = h3, f(a4) = h4, f(a5) = h4 and
f(a6) = h4.

Now, for each hj ∈ H, let f(hj) = {a ∈ A : f(a) = hj} and fj = |f(hj)| (possibly

fj = 0), i.e., f(hj) =
⋃k

p=1 fp(hj). Define hj ∈ H to be an f-house if fj > 0. Clearly
each hj may be an fz-house for more than one priority level z. For each hj ∈ H such that
fj > 0, let dj be a priority level defined as follows:

dj =

{

max {r : 0 ≤ r ≤ k ∧ fr,j > 0} , if fj ≤ cj,
max {r : 0 ≤ r ≤ k ∧ ∑r

i=1 fi,j < cj} , if fj > cj.

Intuitively, if fj ≤ cj then dj is the maximum priority level r such that f(a) = hj for
some a ∈ Pr. If fj > cj then dj is the maximum priority level r such that the total number
of agents a satisfying f(a) = hj and P (a) ≤ r is less than cj . Note that for every hj such

that fj > cj , clearly
∑dj+1

i=1 fi,j ≥ cj , so fdj+1,j > 0. However it is impossible that fi,j > 0

for some i > dj + 1 by definition of an f -house. It follows that fdj+1,j > cj −
∑dj

i=1 fi,j.
We refer to Figure 1 for illustration. Here, d1 = 1, d3 = 2 and d4 = 2. Note that d2 and

d5 are not defined, for h2 and h5 are not f -houses for any agent. Also f3,4 > c4−(f1,4+f2,4).
We now work towards obtaining a characterisation of popular matchings in WCHA.

We begin with the following technical lemma.

Lemma 1. Let M be a matching in a WCHA instance I. Let hj ∈ H be an f-house, and
let 1 ≤ i ≤ dj . Suppose hj is full in M and

⋃i−1
p=1 fp(hj) ⊆ M(hj) but fi(hj) 6⊆ M(hj).

Then M(hj)\
⋃i

p=1 fp(hj) 6= ∅.

Proof. Let F =
⋃i

p=1 fp(hj). Clearly, |F | ≤ ∑dj

p=1 fp,j ≤ cj. Since |F\M(hj)| > 0, it
follows that |M(hj)\F | = |M(hj)| − |F | + |F\M(hj)| > 0.

The next three lemmas contribute to the characterisation of popular matchings in
WCHA.

Lemma 2. Let M be a popular matching in any given WCHA instance I and let a ∈ A
be any agent. Then, a cannot be assigned to a house better than f(a) in M .

Proof. Let a be an agent whose priority index is lowest (i.e., a has greatest weight and
highest priority) such that a is assigned to house hj in M and a prefers hj to f(a) = hl.
Let a ∈ Pi so that

∑i−1
p=1 fp,j ≥ cj by definition of f(a) as a’s f -house. Clearly, there must

be no agent a′ such that a′ ∈ Pz where z ≥ i and f(a′) = hj , for otherwise
∑z−1

p=1 fp,j < cj ,
a contradiction. Let a′ be any agent with priority level z < i such that a′ ∈ f(hj)\M(hj)

– there must exist such an agent since
⋃k

p=i fp(hj) = ∅ and
∑i−1

p=1 fp,j ≥ cj and a ∈ M(hj).

5

Then, by choice of a, a′ is assigned in M to a house worse than f(a′). However, this
means that we can promote a′ to f(a′) and demote a to l(a) to obtain a matching whose
improvement in satisfaction is wz − wi > 0, a contradiction.

Lemma 3. Let M be a popular matching in any given WCHA instance I. Then, for each

f-house hj ∈ H,
⋃dj

i=1 fi(hj) ⊆ M(hj).

Proof. Given 1 ≤ i ≤ dj , we will prove by induction on i that fi(hj) ⊆ M(hj).
For the base case, let i = 1. Suppose that f1(hj) 6⊆ M(hj). Then, there exists some

agent ar ∈ f1(hj)\M(hj). By definition of an f1-house, hj must be the first house on
ar’s preference list. Hence, ar prefers to be assigned to hj than M(ar). Clearly, if hj is
undersubscribed in M , we can promote ar to hj to obtain a matching more popular than
M , a contradiction. Hence, hj is full in M . Choose any as ∈ M(hj)\f1(hj) (which must
exist by Lemma 1). Since as /∈ f1(hj), either (i) as has priority > 1, or (ii) as has priority
1 but f(as) = hl 6= hj . In subcase (i), we can promote ar to hj and demote as to l(as) to
obtain a more popular matching. In subcase (ii), since f(as) = hl, it follows by Lemma 2
that as prefers to be assigned to hl than hj . Now, if hl is undersubscribed in M , we can
promote ar to hj and promote as to hl to obtain a more popular matching. Hence, hl is
full in M . If hl = M(ar), then we can then promote ar to hj and promote as to hl to
obtain a more popular matching. Otherwise, choose any at ∈ M(hl). Clearly, at 6= ar. We
can then promote ar to hj , promote as to hl, and demote at to l(at) to obtain a matching
whose improvement in satisfaction is w1 + w1 − w(at) > 0.

For the inductive case, assume that 2 ≤ i ≤ dj , and if q < i, then fq(hj) ⊆ M(hj)
for all hj ∈ H. Suppose for a contradiction that fi(hj) 6⊆ M(hj). Then, there exists
some ar ∈ fi(hj)\M(hj). Now, since f(ar) = hj , it follows by Lemma 2 that ar must
prefer to be assigned to hj than M(ar). Thus, if hj is undersubscribed in M , we can
promote ar to hj to obtain a more popular matching than M , a contradiction. Hence,
hj is full in M . Choose any as ∈ M(hj)\

⋃i
p=1 fp(hj) which must exist by Lemma 1.

Since as /∈ ⋃i
p=1 fp(hj), either (i) as has priority > i, or (ii) as has priority ≤ i but

f(as) = hl 6= hj .
In subcase (i), we can promote ar to hj and demote as to l(as) to obtain a more

popular matching than M , a contradiction. In subcase (ii), suppose that as has priority
z < i. Then hl is an fz-house so that as ∈ fz(hl). However, this is a contradiction since
by the inductive hypothesis fz(hl) ⊆ M(hl), but M(as) 6= hl. Thus, as has priority i
and as ∈ fi(hl). Clearly, since f(as) = hl, it follows by Lemma 2 that as must prefer to
be assigned to hl than hj . Thus, if hl is undersubscribed, we can promote ar to hj and
promote as to hl to obtain a more popular matching than M , a contradiction. Hence hl is
full. If hl = M(ar), then we can promote ar to hj and promote as to hl to obtain a more
popular matching. Otherwise, hl 6= M(ar). We will show how to choose at ∈ M(hl). Since
f(as) = hl and 2 ≤ i ≤ k, by our definition of f -houses, hl must be the most preferred
house on as’s preference list such that

∑i−1
p=1 fp,l < cl.

Now, by the inductive hypothesis, it must be the case that
⋃i−1

p=1 fp(hl) ⊆ M(hl).

Since
∑i−1

p=1 fp,l < cl and hl is full, it follows that
⋃i−1

p=1 fp(hl) ⊂ M(hl). Hence, it must

be the case that M(hl)\
⋃i−1

p=1 fp(hl) 6= ∅. It follows that there exists some agent at ∈
M(hl)\

⋃i−1
p=1 fp(hl) and, either (i) at ∈ ⋃k

p=i fp(hl) or (ii) at /∈ f(hl). Clearly, in case
(ii), at has priority ≥ i by a similar argument for as. For, if at has priority z < i, then
by the inductive hypothesis, since hl′ = f(at) is an fz-house and at ∈ fz(hl′), it follows
that fz(hl′) ⊆ M(hl′). However, this gives a contradiction since M(at) 6= hl′ . Hence, at

has priority ≥ i in both cases (i) and (ii). We can then promote ar to hj , promote as

to hl and demote at to l(at) to obtain a matching whose improvement in satisfaction is

6

wi + wi − w(at) > 0, a contradiction.

Lemma 4. Let M be a popular matching in any given WCHA instance I. Then, for each

f-house hj ∈ H, if fj > cj, then M(hj)\
⋃dj

p=1 fp(hj) ⊆ fdj+1(hj).

Proof. Clearly, fdj+1,j > cj −
∑dj

p=1 fp,j. It follows by Lemma 3 that
⋃dj

p=1 fp(hj) ⊆ M(hj)
so that no matter whether hj is full or undersubscribed, fdj+1(hj) 6⊆ M(hj). Hence, there
exists some agent ar such that ar ∈ fdj+1(hj)\M(hj). Note that ar has priority dj + 1.
Clearly, since f(ar) = hj, ar must prefer to be assigned to hj rather than M(ar) by
Lemma 2. Hence, if hj is undersubscribed, we can promote ar to hj to obtain a more
popular matching than M , a contradiction. It follows that hj is full. We will show that

M(hj)\
⋃dj

p=1 fp(hj) ⊆ fdj+1(hj).
If dj = 0, then it must be the case that f1,j > cj and ar ∈ f1(hj)\M(hj). If M(hj) ⊆

f1(hj), then the result is immediate. Hence, suppose that M(hj) 6⊆ f1(hj). Choose any
as ∈ M(hj)\f1(hj). Clearly, either (i) as has priority 1 but f(as) = hl 6= hj or (ii) as

has priority > 1. In case (i), since f(as) = hl, as must prefer to be assigned to hl than
hj by Lemma 2. Hence, if hl is undersubscribed, we can promote ar to hj and as to
hl to obtain a more popular matching, a contradiction. Thus, hl is full. By Lemma 3,
⋃dl

p=1 fp(hl) ⊆ M(hl). Since as ∈ f1(hl)\M(hl), it follows that dl = 0, i.e., f1,l > cl. Now,
if M(ar) = hl, then we can promote ar to hj and promote as to hl to obtain a more
popular matching. Hence, M(ar) 6= hl. Choose any at ∈ M(hl). We then promote ar to
hj , promote as to hl and demote at to l(at) to obtain a matching whose improvement in
satisfaction is w1 + w1 − w(at) > 0. In case (ii), we can promote ar to hj and demote as

to l(as) to obtain a more popular matching.

Hence, dj ≥ 1. Suppose for a contradiction that M(hj)\
⋃dj

p=1 fp(hj) 6⊆ fdj+1(hj). It

follows that there exists some agent as ∈ M(hj)\
⋃dj+1

p=1 fp(hj). Recall that ar has priority
dj +1. Clearly, either (i) as has priority ≤ dj +1 but f(as) = hl 6= hj , or (ii) as has priority
> dj + 1. It is immediate in case (ii) that we can promote ar to hj and demote as to l(as)
to obtain a more popular matching, a contradiction. Hence, case (i) applies. It follows by
Lemma 2 that as prefers to be assigned to hl than hj , and so, if hl is undersubscribed, we
can then obtain a more popular matching by promoting ar to hj and promoting as to hl.
Hence hl is full. Now, if M(ar) = hl, we can then promote ar to hj and promote as to hl

to obtain a more popular matching. Hence, M(ar) 6= hl.
Let as have priority z1 so that z1 ≤ dj + 1. By our definition of f -houses, since

hl = f(as), if z1 = 1, then hl is the first house on as’s preference list. Since hl is full,
then choose any at ∈ M(hl) and let at have priority z2. We obtain an improvement in
satisfaction of w(ar) + w(as) − w(at) = wdj+1 + w1 − wz2

> 0 by promoting ar to hj ,
promoting as to hl and demoting at to l(at). Hence, it follows that z1 > 1. Then, hl must
be the most preferred house on as’s preference list such that

∑z1−1
p=1 fp,l < cl. By definition

of f(as) = hl, it follows that z1 ≤ dl + 1. Now, by Lemma 3,
⋃dl

p=1 fp(hl) ⊆ M(hl).
However, as /∈ M(hl). Hence, it follows that z1 > dl, i.e., it follows that z1 = dl + 1. Since
∑z1−1

p=1 fp,l < cl and hl is full, it follows that
⋃z1−1

p=1 fp(hl) ⊂ M(hl). Hence, we have that

M(hl)\
⋃z1−1

p=1 fp(hl) 6= ∅. It follows that there exists some agent at ∈ M(hl)\
⋃z1−1

p=1 fp(hl).

Clearly, either (i) at ∈
⋃k

p=z1
fp(hl) or (ii) at /∈ f(hl).

Note that since M(ar) 6= hl, at 6= ar. Now, in both case (i) and (ii), if at has
priority z2 ≥ z1, we can then promote ar to hj , promote as to hl and demote at to
l(at) to obtain a matching whose improvement in satisfaction is w(ar) + w(as) − w(at) =
wdj+1 + wz1

− w(at) > 0, a contradiction. Hence z2 < z1, and so only case (ii) applies.
Let hl′ = f(at). It is obvious, by Lemma 2, that at prefers to be assigned to hl′ than
hl. Furthermore, hl′ 6= hj , for suppose not. As z2 < z1 ≤ dj + 1 and f(at) is defined,

7

it follows that z2 ≤ dj . By Lemma 3,
⋃z2

p=1 fp(hj) ⊆ ⋃dj

p=1 fp(hj) ⊆ M(hj) so that
at ∈ M(hj). However, this gives a contradiction since at ∈ M(hl) and hj 6= hl. Clearly
also, hl′ 6= M(ar) for otherwise, we can promote ar to hj , promote as to hl and promote at

to hl′ to obtain a more popular matching, a contradiction. Hence, the houses hl′ , hl, hj and
M(ar) are distinct. Clearly too, the agents ar, as and at are distinct for z2 < z1 ≤ dj + 1
and ar 6= as.

We assume that hl′ is full, for otherwise we can obtain a contradiction by promoting
ar to hj , promoting as to hl and promoting at to hl′ . Let au ∈ M(hl′). If z2 = 1, then
we can promote ar to hj , promote as to hl, promote at to hl′ and demote au to l(au) to
obtain a new matching with improvement in satisfaction w(ar)+w(as)+w(at)−w(au) =
wdj+1 + wz1

+ w1 −w(au) > 0. Hence, z2 > 1. If we let at and au take the roles of as and
at respectively, then it follows by the argument that we use to define at that we are able
to choose au such that au has priority < z2 and au /∈ f(hl′). It follows that au is an agent
distinct from ar, as and at since P (au) < z2.

By continuing this argument, it follows that we obtain a sequence of distinct agents
a0, a1, a2, a3, ... where a0 = ar, a1 = as, a2 = at, and a3 = au. For i ≥ 4, the above
construction indicates that P (ai) < P (ai−1). If this sequence does not terminate as a
result of arriving at a contradiction due to any of the above cases, then we are bound to
ultimately generate an agent ax such that P (ax) < 1, which is impossible.

Lemmas 3 and 4 give rise to the following corollary concerning the assignees of f -houses
in popular matchings.

Corollary 5. Let M be a popular matching in any WCHA instance I. Then, for every
f -house hj ,

1. if fj ≤ cj , then f(hj) ⊆ M(hj);

2. if fj > cj , then |M(hj)| = cj and
⋃dj

p=1 fp(hj) ⊆ M(hj) ⊆
⋃dj+1

p=1 fp(hj).

Proof. In Case 1, if fj ≤ cj , it follows by definition of dj that
⋃k

p=dj+1 fp(hj) = ∅. Clearly

then, f(hj) =
⋃dj

p=1 fp(hj) ⊆ M(hj) by Lemma 3. In Case 2, it follows by Lemmas 3 and

4 that
⋃dj

p=1 fp(hj) ⊆ M(hj), M(hj)\
⋃dj

p=1 fp(hj) ⊆ fdj+1(hj) and |M(hj)| = cj .

We now define the concept of an s-house for each agent. Given a popular matching
M , if M(a) 6= f(a), then as we shall show, M(a) = s(a). Given 1 ≤ z ≤ k, for every agent
a ∈ Pz, we define s(a) to be the most preferred house hj on a’s preference list such that
hj 6= f(a) and

∑z
i=1 fi,j < cj. Note that s(a) may not exist if f(a) = l(a). However, all

such agents will be assigned to their f -houses in any matching since last resort houses are
unique to individual agents.

A house hj ∈ H is an s-house if hj = s(a) for some a ∈ A. To illustrate the s-house
definition, let us look at Instance I1 in Figure 1 again. We may verify from the definition
of s-houses that s(a1) = h2, s(a2) = h4, s(a3) = h5, s(a4) = h5, s(a5) = h5 and s(a6) = h2.
Clearly, the set of fi-houses need not be disjoint from the set of sj-houses for i 6= j as
seen from this example. Now, since the process of defining s-houses is analogous to the
algorithm for defining f -houses, the time complexity for defining s-houses is also O(m).

Now, it may be shown that a popular matching M will only assign an agent a to either
f(a) or s(a) as indicated by the next lemma.

Lemma 6. Let M be a popular matching in any WCHA instance I. Then, every agent
a ∈ A is assigned in M to either f(a) or s(a).

8

Proof. Let a ∈ Pi and let M(a) = hx. Suppose that the statement of this lemma is false.
By Lemma 2, a cannot be assigned to a house better than f(a). Then, besides f(a) or
s(a), hx can either be (i) a house between f(a) and s(a) or (ii) a house worse than s(a).

In case (i), it follows that hx is an f -house such that
∑i

p=1 fp,x ≥ cx, for oth-
erwise s(a) = hx. Hence, fx ≥ cx and M(hx) ⊆ f(hx) by Corollary 5. However,
a ∈ M(hx)\f(hx), a contradiction.

In case (ii), let hj = s(a). It follows that a must prefer to be assigned to hj than
M(a) = hx. Clearly, hj is full, for otherwise we can promote a to hj , a contradiction.
It follows by our definition of s-houses that

∑i
p=1 fp,j < cj . Hence, by our definition

of dj, i ≤ dj. Since
⋃dj

p=1 fp(hj) ⊆ M(hj) (by Lemma 3) and hj is full, it follows that
⋃i

p=1 fp(hj) ⊂ M(hj) so that M(hj)\
⋃i

p=1 fp(hj) 6= ∅. Hence, there exists some as ∈
M(hj)\

⋃i
p=1 fp(hj). It is obvious that either (i) as ∈

⋃k
p=i+1 fp(hj), or (ii) as /∈ f(hj).

Clearly in case (i), as has priority > i, so we can promote a to hj and demote as to
l(as) to obtain a matching whose improvement in satisfaction is wi − w(as) > 0. In case
(ii), let as have priority z1. It follows that z1 ≤ i, for otherwise, we can promote a to
hj and demote as to l(as) to obtain a new matching whose improvement in satisfaction
is wi − wz1

> 0. Let f(as) = hl. Clearly, as must prefer to be assigned to hl than hj by
Lemma 2. If hl is undersubscribed, we can then promote a to hj and promote as to hl

to obtain a more popular matching, a contradiction. Hence, suppose that hl is full. Let
at ∈ M(hl).

If z1 = 1, then we can promote a to hj , promote as to hl and demote at to l(at) to obtain
a matching with improvement in satisfaction w(a)+ w(as)−w(at) = wi + w1 −w(at) > 0.
Hence, suppose that z1 > 1. Clearly, hx 6= hl for suppose otherwise. By Corollary 5,
hl must be an f -house such that fl > cl by existence of as, for otherwise as ∈ M(hl).
It follows that M(hl) ⊆ f(hl). Now, if hl = hx, then this gives us a contradiction since
a ∈ M(hl) but hx 6= f(a) for a prefers s(a) to hx.

Hence, hl 6= hx. Then, at 6= a. It follows that we can reuse arguments from the proof
of Lemma 4 to obtain a sequence of distinct agents a0, a1, a2, ... where a0 = a, a1 = as,
and a2 = at. For j ≥ 3, the construction of the sequence indicates that P (ai) < P (ai−1).
If this sequence does not terminate as a result of arriving at a contradiction due to any
of the cases outlined in Lemma 4, then we are bound to ultimately generate an agent ax

such that P (ax) < 1, which is impossible.

Corollary 5 and Lemma 6 give rise to the following result.

Theorem 7. Let M be a popular matching in any given WCHA instance I.

1. For every f -house hj,

(a) if fj ≤ cj , then f(hj) ⊆ M(hj);

(b) if fj > cj , then |M(hj)| = cj and
⋃dj

p=1 fp(hj) ⊆ M(hj) ⊆
⋃dj+1

p=1 fp(hj).

2. Every agent a is assigned to either f(a) or s(a).

3 Algorithm for finding a popular matching

Let us form a subgraph G′ of G by letting G′ contain only two edges for each agent
a ∈ A, that is, one to f(a) and the other to s(a). It follows that all popular matchings
must be contained in G′ by Theorem 7. However, Theorem 7 only gives us necessary
conditions for a matching to be popular in an instance of WCHA, since not all matchings

9

in G′ satisfying these conditions are popular. For, let us consider the example WCHA
instance in Figure 1. We have at least two matchings which satisfy Conditions 1 and
2 of Theorem 7: M1 = {(a1, h1), (a2, h3), (a3, h3), (a4, h5), (a5, h4), (a6, h4)} and M2 =
{(a1, h1), (a2, h3), (a3, h3), (a4, h4), (a5, h5), (a6, h4)}. However, while M1 may be verified
to be a popular matching, M2 is not popular because there exists another matching M3 =
{(a2, h1), (a3, h3), (a4, h3), (a5, h4), (a6, h4)} which gives an improvement in satisfaction of
w(a2) + w(a4) + w(a5) − w(a1) = 4 + 2 + 2 − 7 > 0 over M2. Hence, we will “enforce”
the sufficiency of the conditions by removing certain edges in G′ that cannot form part of
any popular matching in I. We show how to do this by first introducing the notion of a
potential improvement path or PIP in short, which generalises the concept of a promotion
path from [17] to WCHA.

3.1 Potential improvement paths

Let us now define a matching M that satisfies Conditions 1 and 2 of Theorem 7 to be
well-formed. Then, a PIP leading out of some f -house h0 with respect to a well-formed
matching M is an alternating path Π = 〈h0, a0, h1, a1, ..., hx, ax〉 such that hi = f(ai) and
(ai, hi) ∈ M for 0 ≤ i ≤ x, and ai prefers hi+1 to hi for i < x. A PIP leading out of
h0 always exists, which can be seen as follows. Since h0 is an f -house and c0 ≥ 1, there
exists some agent a′0 ∈ f(h0)∩M(h0) by Theorem 7. Then, by definition, 〈h0, a

′
0〉 is a PIP

leading out of h0. The next lemma shows that any PIP leading out of h0 must contain
a sequence of agents with strictly decreasing priorities. It follows that the sequence of
agents in Π must be distinct.

Lemma 8. Let M be a well-formed matching. Let Π = 〈h0, a0, ..., hx, ax〉 be a PIP with
respect to M leading out of h0 as defined above. Then, P (ai+1) < P (ai) for 0 ≤ i < x.

Proof. Let a0 have priority z1. If x = 0, then a0 is the last (only) agent in the path.
Otherwise, x > 0 and it follows by definition of Π that h0 is not the first house on a0’s
preference list as h1 is a house that a0 prefers to h0. Hence, it must be that h1 is an
f -house such that

∑z1−1
p=1 fp,1 ≥ c1 by definition of f(a0) = h0.

Since M is well-formed and f1 ≥ c1, it follows by Theorem 7 that |M(h1)| = c1 and
M(h1) ⊆ f(h1). Now, if

∑z1−1
p=1 fp,1 = c1, then by definition of an f -house, fp,1 = 0 for

z1 ≤ p ≤ k. Hence, d1 ≤ z1 − 1. Since f1 = c1, it follows that M(h1) ⊆ ⋃z1−1
p=1 fp(h1) by

Theorem 7. On the other hand, if
∑z1−1

p=1 fp,1 > c1, then f1 > c1 and d1 + 1 ≤ z1 − 1.

It follows by Theorem 7 again that M(h1) ⊆
⋃z1−1

p=1 fp(h1). Clearly as a result, M(h1) ⊆
⋃z1−1

p=1 fp(h1) in all cases.
Since a1 ∈ M(h1), it follows that f(a1) = h1 and a1 has priority strictly less than z1.

Moreover, we can repeat the argument to deduce the priority of each agent ai in Π. It is
then straightforward to see that the priority of any agent in Π must be strictly less than
its predecessor so that P (ai+1) < P (ai) for each i ≥ 0.

Let us define the cost of Π to be cost(Π) = w(ax) − w(ax−1) − ... − w(a0) if x > 0. Note
that cost(Π) = w(a0) if x = 0. We now motivate the notion of a PIP as follows. Let us
suppose that there exists some agent ar who prefers h0 to M(ar). The next lemma shows
that any such agent cannot belong to Π. Now, if cost(Π) < w(ar), we can conclude that
the well-formed matching M is not popular because we can promote ar to hj , and use
the PIP to promote each ai to hi+1 for all i < x and demote ax to l(ax) to obtain a new
matching that is more popular than M .

Lemma 9. Let M be a well-formed matching. Let Π = 〈h0, a0, ..., hx, ax〉 be a PIP with
respect to M leading out of h0 as defined above. Then, any agent a who prefers h0 to
M(a) does not belong to Π.

10

Algorithm 2 First stage of Algorithm Prune-WCHA
1: for each f -house h do

2: λ(h) := w1; // a suitable upper bound
3: end for

4: for z in 1..k do

5: for each a ∈ Pz do

6: let S contain the set of houses that a prefers to f(a);
7: if S 6= ∅ then

8: λmin(a, f(a)) := min {λ(h) : h ∈ S};
9: else

10: λmin(a, f(a)) := ∞; // a suitable default value
11: end if

12: if λmin(a, f(a)) < wz then

13: return “No popular matching exists”;
14: end if

15: end for

16: for each fz-house hj do

17: f ′

z(hj) := fz(hj);
18: if z ≤ dj then

19: for each a ∈ f ′

z(hj) do

20: remove (a, s(a)) from G′;
21: end for

22: else // z = dj + 1
23: for each a ∈ f ′

z(hj) such that λmin(a, hj) < 2wz do

24: remove (a, hj) from G′;
25: remove a from f ′

z(hj);
26: end for

27: if f ′

z(hj) = ∅ then // |f ′

z(hj)| < cj −
∑dj

p=1
fp,j

28: return “No popular matching exists.”;
29: end if

30: end if

31: λz(hj) := min(wz , min {λmin(a, hj) − wz : a ∈ f ′

z(hj)}); // λmin(a, hj) ≥ wz

32: λ(hj) := min(λ(hj), λz(hj));
33: if z > dj and λ(hj) < wz then

34: return “No popular matching exists.”;
35: end if

36: end for

37: end for

Proof. Let a have priority z. Since M is well-formed, either (i) M(a) = f(a) or (ii)
M(a) = s(a). It follows in case (i) that

∑z−1
p=1 fp,0 ≥ c0 by definition of f(a). In case (ii),

either (a) h0 = f(a) or (b) h0 is an f -house such that h0 6= f(a) and
∑z

p=1 fp,0 ≥ c0 by
definition of s(a). Now, in subcase (a), if

∑z
p=1 fp,0 < c0, then z ≤ d0 so that

⋃z
p=1 fp(h0) ⊆

⋃d0

p=1 fp(h0) ⊆ M(h0) since M is a well-formed matching. However, this implies that
a ∈ M(h0), a contradiction. It follows in all cases that

∑z
p=1 fp,0 ≥ c0. Using a similar

argument as in Lemma 8, we can establish that |M(h0)| = c0 and M(h0) ⊆
⋃z

p=1 fp(h0).
It follows that P (a) ≥ P (a0) and hence, the priority of a must be greater than the priority
of any other agent in Π by Lemma 8. Since a 6= a0, a cannot be an agent in Π.

3.2 Pruning the graph

Let us now introduce Algorithm Prune-WCHA which will enable us to remove certain
edges in G′ that cannot be part of any popular matching. The algorithm is divided into
two stages, with the first stage shown in Algorithm 2 and the second stage shown in

11

Algorithm 3 Second stage of Algorithm Prune-WCHA
1: for each a ∈ A do

2: let hl := s(a);
3: let R contain the set of houses that a prefers to hl;
4: let S contain the set of houses that a prefers to f(a);
5: R := R − (S ∪ {f(a)});
6: if R 6= ∅ then

7: λmin(a, hl) := min {λ(h) : h ∈ R};
8: else

9: λmin(a, hl) := ∞; // a suitable default value
10: end if

11: if λmin(a, hl) < w(a) or fl ≥ cl then

12: remove (a, hl) from G′;
13: end if

14: end for

Algorithm 3. The first stage is carried out in phases, with each phase corresponding to a
priority level Pz.

Intuitively, in each phase in the first stage, we compute the costs of PIPs and determine
the minimum of these leading out of each f -house hj , and then use these values to identify
and remove certain edges incident to f -houses in G′ that cannot belong to any popular
matching. Based on the minimum values of PIPs calculated for f -houses in the first stage,
we then identify and remove in the second stage edges incident to s-houses in G′ that
cannot belong to any popular matching. Let G′′ denote the graph obtained from G′ once
the algorithm terminates (following these edge removals) – we refer to G′′ as the pruned
graph. The removal of these edges will ensure that any well-formed matching in G′′ is
popular. Over the phases of execution, certain conditions may arise which signal to the
algorithm that no popular matching exists.

Recall that hj may be an f -house for more than one priority level, and hj may be
an f -house for more than one agent for each priority level. In the algorithm, we will use
λz(hj) as a variable and its value at the end of the algorithm equals the minimum cost
of a PIP leading out of hj taken over all well-formed matchings in G′′ such that (ar, hj)
is the first edge for some ar ∈ Pz. We will also use λ(hj) to compute the minimum cost
taken over all λz(hj). Note that we initialise λ(h) to w1 for every f -house h at the outset
of the first stage of Algorithm Prune-WCHA, for if Π is any PIP leading out of h, then
cost(Π) ≤ w(ax), where ax is the final agent on the path. However, w(ax) ≤ w1. Hence,
w1 is an upper bound for the final computed value of λ(h). Let Πmin(hj) denote a PIP
with minimum cost leading out of hj taken over all well-formed matchings in G′′. Let
cost(Πmin(hj)) denote the cost of this path. Then, as we shall show, the final value of
λ(hj) in the execution of the algorithm gives us the value of cost(Πmin(hj)).

For any agent as ∈ A, let S contain the set of houses on as’s preference list that as

prefers to f(as). Note that S will be empty if f(as) is the first house on as’s preference
list. If S 6= ∅, we will use λmin(as, f(as)) within the algorithm to compute the minimum
cost of a PIP out of hq, taken over all hq ∈ S, and over all well-formed matchings in G′′;
otherwise, the algorithm sets λmin(as, f(as)) to ∞ as a suitable default value. Similarly,
let R contain the set of houses on as’s preference list after f(as) that as prefers to s(as). If
R 6= ∅, we will use λmin(as, s(as)) within the algorithm to compute the minimum cost of a
PIP out of hq, taken over all hq ∈ R, and over all well-formed matchings in G′′; otherwise,
the algorithm sets λmin(as, s(as)) to ∞ as a suitable default value.

12

3.3 Proof of correctness

The following lemma gives an important technical result regarding the correctness of the
algorithm.

Lemma 10. Let z be an iteration of the for loop on line 4 of the first stage of Algorithm
Prune-WCHA. Suppose that, by the end of this iteration, the algorithm has not terminated
with a report that no popular matching exists. Let hj ∈ H be any fz-house. Then, at the
end of this loop iteration:

1. for each a ∈ Pz, if f(a) is not the first ranked house in a’s preference list, then
λmin(a, f(a)) equals the minimum cost of all PIPs among all houses that a prefers
to f(a) taken over all well-formed matchings in G′′; else, λmin(a, f(a)) = ∞.

2. λz(hj) stores the minimum cost among all PIPs taken over all well-formed matchings
in G′′ such that (a, hj) is the first edge for some a ∈ Pz.

3. λ(hj) stores the minimum cost among all PIPs taken over all well-formed matchings
in G′′ such that (a, hj) is the first edge for some a ∈ Pq where 1 ≤ q ≤ z.

4. if any edge has been removed from G′, then it cannot be part of any popular matching.

Proof. Given 1 ≤ z ≤ k, we will proceed by induction on z.
For the base case, let z = 1. If a ∈ P1, then clearly S = ∅ for a so that ∞ is assigned

to λmin(a, f(a)) as required in line 10. Now, any PIP leading out of hj and containing
the edge (a, hj) ends at a and has cost w1. Clearly, w1 is assigned to λz(hj) as required
at line 31 since λmin(a′, hj) = ∞ for each a′ ∈ f ′

1(hj). Also, w1 is assigned to λ(hj) at
line 32 as required, since this is the minimum of λz(hj) and the initialised value of λ(hj)
which is also w1. Finally, the only edges removed during this iteration are dealt with at
lines 19-21 (as the condition in line 23 is not satisfied). For, clearly if a ∈ P1 and dj ≥ 1, a
must be assigned to f(a) = hj and not s(a) in any well-formed matching M by Condition
1 of Theorem 7. Hence, the edge (a, s(a)) cannot belong to any popular matching.

For the inductive case, let us assume that 2 ≤ z ≤ k, and that the result is true for
z − 1. Let a ∈ Pz be any agent. Suppose that S 6= ∅. Choose any hl ∈ S. It follows
that

∑z−1
p=1 fp,l ≥ cl by definition of hj = f(a). Hence, it is impossible that hl can be

an fp-house for any p ≥ z. By the inductive hypothesis, λ(hl) stores the minimum cost
among all PIPs leading out of hl where (a′, hl) is the first edge for some a′ ∈ Pq where
1 ≤ q ≤ z − 1. Hence, λ(hl) stores the minimum cost among all PIPs leading out of hl at
the end of the iteration z − 1. Thus, if S 6= ∅, then when λmin(a, f(a)) is defined during
iteration z in line 8, it contains the minimum cost of a PIP leading out of any house that
a prefers to f(a); otherwise, S = ∅ and λmin(a, f(a)) is assigned to be ∞ in line 10 as
required.

Now, it follows that the minimum cost of a PIP out of hj for which the first edge
is (a, hj) such that a ∈ fz(hj) either stops at a and has cost wz, or it continues. If it
continues, it must do so with some edge (a, hl) such that a prefers hl to hj . Hence, the
minimum cost of a PIP out of hj for which the first edge is (a, hj) is the minimum of wz

and λmin(a, hj) − wz. Clearly then, this is exactly the value assigned to λz(hj) on line
31 as required. Also, it follows by the inductive hypothesis that λ(hj) should be set at
iteration z to be the minimum of λz(hj) and the value of λ(hj) at the end of iteration
z − 1. This is precisely the value assigned to λ(hj) at line 32.

Finally, it remains to show that any edge removed during iteration z cannot belong to
part of any popular matching. Now, if z ≤ dj, then it follows by Theorem 7 that a must
be assigned to hj and not s(a) for any well-formed matching M . Hence, the edge (a, s(a))

13

cannot belong to any well-formed matching and is deleted in line 20 as required. Clearly,
if fj ≤ cj , then it is bound to be the case that z ≤ dj .

On the other hand, if z > dj , then it follows that in any well-formed matching M ,
⋃dj

p=1 fp(hj) ⊆ M(hj) but only a proper subset of fdj+1(hj) will be assigned to hj in M .
Now, suppose that a ∈ M(hj) ∩ fdj+1(hj). It follows that z = dj + 1. Let hl be any
house that a prefers to hj , supposing that such a house exists. Clearly, if there exists a
minimum cost PIP Π out of hl such that cost(Πmin(hl)) − wz < wz, then Π can be used
to promote a to hl, and in the process, free up a space in hj which can thus be assigned to
any agent a′ in fdj+1(hj)\M(hj). Clearly, M(a′) = s(a′) since M is well-formed so that
a′ improves as result. It follows that M cannot be popular since we can promote a′ to hj ,
promote a to hl and promote along Π to obtain a more popular matching than M . Hence,
if λmin(a, hj) < 2wz, then M is not popular. Since M is arbitrary, the edge (a, hj) cannot
belong to any popular matching so that we delete it in line 24.

Note that Πmin(hl) must be a minimum cost PIP with respect to M . For, let us
consider the first edge (b, hl) in Πmin(hl). Note that fl ≥ cl and dl + 1 < z since hl is a
house that a prefers to f(a) = hj .

Suppose firstly that b ∈ fdl+1(hl). Let λdl
be the value of λ(hl) at the end of phase dl.

Now, we have that the value of λ(hl) as computed in phase dl + 1 by lines 31-32 of the

algorithm is equal to min(wdl+1, λdl
,min

{

λmin(b′, hl) − wdl+1 : b′ ∈ f ′
dl+1(hl)

}

). Let us

suppose that min
{

λmin(b′, hl) − wdl+1 : b′ ∈ f ′
dl+1(hl)

}

< wdl+1. Then, there exists some

agent b′ ∈ f ′
dl+1(hl) such that λmin(b′, hl) − wdl+1 < wdl+1, i.e., λmin(b′, hl) < 2wdl+1.

However, such a b′ would have been removed from f ′
dl+1(hl) at line 25, a contradiction.

Hence, λmin(b′, hl)−wdl+1 ≥ wdl+1 for all b′ ∈ f ′
dl+1(hl). It follows that any minimum cost

PIP in G′′ (with respect to any well-formed matching) with (b′, hl) as its first edge must
have cost greater than or equal to wdl+1, i.e., cost(Πmin(hl)) ≥ wdl+1. Now, suppose that
λdl

< wdl+1. Then, there exists a PIP leading out of hl whose first edge is (c, hl) where
P (c) ≤ dl, with cost less than wdl+1. However, this then contradicts the fact that the PIP
with (b, hl) as its first edge has minimum cost for hl as we supposed. Hence, wdl+1 is a
lower bound for the final computed value of λ(hl). Clearly then, λ(hl) = wdl+1. Since
(b, hl) is the first edge of Πmin(hl) where b ∈ fdl+1(hl), then as this path is defined with
respect to some well-formed matching, it follows that (b′, hl) ∈ M for some b′ ∈ fdl+1(hl)
(possibly b = b′), since M is well-formed. Then, 〈hl, b

′〉 is a PIP of cost wdl+1 with respect
to M . Moreover, since wdl+1 = cost(Πmin(hl)) < 2wz as established in the previous
paragraph, it follows that we can promote a to hl, promote a′ to hj and demote b′ from
hl so that M is not popular as shown above.

Hence, b ∈ ⋃dl

p=1 fp(hl). Clearly then, (b, hl) must belong to every well-formed match-
ing by Condition 1(a) of Theorem 7 so that (b, hl) must belong to M . It follows that we can
repeat the above argument to show that Πmin(hl) is a minimum cost PIP with respect to
M by considering the remaining alternate edges in Πmin(hl). If each alternate edge (c, hx)
satisfies the condition c ∈ ⋃dx

p=1 fp(hx), then the result is immediate. Otherwise, it must
be the case that we encounter some edge (c′, hx′) in Πmin(hl) such that c′ ∈ fdx′+1(hx′).
Clearly then, (c′, hx′) is the final edge in Πmin(hl) so that we must be able to promote a
to hl, promote a′ to hj and promote along Πmin(hl) to obtain a more popular matching
than M by a similar argument to that in the previous paragraph.

The next three lemmas establish the correctness of the algorithm.

14

Lemma 11. Suppose that Algorithm Prune-WCHA does not terminate during the execu-
tion of its first stage by reporting that no popular matching exists. Then, any edge removed
by Algorithm Prune-WCHA over both stages cannot belong to a popular matching.

Proof. By Lemma 10, any edges removed by Algorithm Prune-WCHA in the first stage
cannot belong to any popular matching. We now show that any edges removed by the
algorithm in the second stage also cannot belong to any popular matching.

Let M be any well-formed matching. Let a be any agent and let P (a) = z. Also, let
R contain the set of houses between f(a) and s(a) on a’s preference list that a prefers to
s(a) (not including f(a) and s(a)). Let s(a) = hl. Suppose that M(a) = hl. Let hj ∈ R
and suppose that cost(Πmin(hj)) < wz. Clearly, Πmin(hj) must be a minimum cost PIP
with respect to M by a similar argument to that used in the proof of Lemma 10. Then,
Πmin(hj) can be used to free up hj and promote a to hj to obtain a more popular matching
than M . Hence, M cannot be popular. It follows that an edge pruned due to the first
condition in line 11 of the second stage of the algorithm cannot belong to any popular
matching.

Now, if fl ≥ cl and M(a) = hl, then M cannot be popular by Condition 1 of Theorem
7, since M(hl) 6⊆

⋃dl+1
p=1 fp(hl). This shows that the edge (a, hl) pruned due to the second

condition in line 11 of the second stage of the algorithm also cannot belong to any popular
matching.

It thus follows that any edges removed by the algorithm cannot belong to a popular
matching.

Lemma 12. If Algorithm Prune-WCHA reports that no popular matching exists, then I
does not admit a popular matching.

Proof. Let us consider the cases where Algorithm Prune-WCHA reports that no popular
matchings exist as a result of some condition being satisfied: (i) lines 12-13, (ii) lines 27-28
and (iii) lines 33-34 during some iteration z of the for loop on line 4 of the first stage.
Suppose for a contradiction that M is a popular matching in I. Then M is a well-formed
matching in G′ by Theorem 7. Also M is a well-formed matching in G′′, since no edge of
M is deleted by the algorithm up to this point by Lemma 10.

In case (i), let a be the agent considered during the relevant iteration of the for loop
on line 5 when the algorithm terminates. Then P (a) = z. Let hj = f(a) and let hl be a
house that a prefers to hj such that λmin(a, hj) = cost(Πmin(hl)). It follows by a similar
argument to that used in the proof of Lemma 10 that Πmin(hl) must be a minimum cost
PIP with respect to M . Now, if λ(hl) < wz, then we can use Πmin(hl) to free hl and
then promote a to hl to obtain a more popular matching than M . Hence, M cannot be
popular, a contradiction.

In case (ii), clearly fj > cj . Now, if f ′
dj+1(hj) = ∅ after the removal of edges in lines

23-26, then it follows that no well-formed matching can exist in G′′ since no matching can
satisfy Condition 1(b) of Theorem 7, a contradiction to the earlier observation that M is
a well-formed matching in G′′.

In case (iii), z = dj + 1. Clearly, only a proper subset of agents in fdj+1(hj) can be
assigned to hj in M since fj > cj . Let a ∈ fdj+1(hj)\M(hj). Note that Πmin(hj) must be
a minimum cost PIP with respect to M using a similar argument in the proof of Lemma
10. Now, if λ(hj) < wdj+1, then Πmin(hj) can be used to free up a place in hj and then
promote a (who must be assigned to s(a) in M) to hj to obtain a matching that is more
popular than M , a contradiction.

Lemma 13. Suppose that Algorithm Prune-WCHA does not state that no popular match-
ing exists. Let M be a well-formed matching in the pruned graph G′′. Then, M is popular.

15

Proof. Now, if M is not popular, it follows that there exists another matching M ′ which
is more popular than M . Let us clone G′′ to obtain a cloned graph C(G′′) as follows. We
replace every house hj ∈ H with the clones h1

j , h
2
j , . . . , h

cj

j . We then divide the capacity
of each house among its clones by allowing each clone to have capacity 1. In addition, if
(a, hj) is an edge in G′′, then we add (a, hp

j) to the edge set of C(G′′) for all p (1 ≤ p ≤ cj).
Let us then adapt the well-formed matching M in G′′ to obtain its clone C(M) in C(G′′)
as follows. If a house hj in G′′ is assigned to xj agents a1, ...axj

in M , then we add (ap, h
p
j)

to C(M) for 1 ≤ p ≤ xj, so that |C(M)| = |M |. We repeat a similar process for M ′ to
obtain its clone C(M ′) in C(G′′).

Let us consider X = C(M) ⊕ C(M ′). Since sat(M ′,M) > 0, let a ∈ A be an agent
who prefers M ′ to M . Let P (a) = z and let M ′(a) = hj . We will show that there exists
a PIP Π leading out of hj with respect to M . Since M is well-formed, we can reuse a
similar argument to the proof of Lemma 9 to establish that hj is an f -house such that
∑z

p=1 fp,j ≥ cj . It follows that hj is full in M and M(hj) ⊆ f(hj) by Theorem 7. Let
ar ∈ M(hj)\M ′(hj) (ar must exist since hj is full in M) and let P (ar) = z1. Then, a 6= ar.
Also, it follows that f(ar) = hj and z1 ≤ z. If ar does not prefer M ′ to M , then we finish
tracing Π. Otherwise, we will extend Π to make sure that it ends with some agent b who
prefers M to M ′. It follows by definition of f(ar) that M ′(ar) = hl is an f -house that
ar prefers to hj such that

∑z1−1
p=1 fp,l ≥ cl and hence by Theorem 7, M(hl) ⊆ f(hl). Let

as ∈ M(hl)\M ′(hl) and let P (as) = z2. Clearly then, z2 < z1. It follows by the same
argument as for ar that if as does not prefer M ′ to M , then we finish tracing Π, i.e.,
Π = 〈hj , ar, hl, as〉. Otherwise, we repeat the argument until we encounter an agent at

who does not prefer M ′ to M so that Π terminates. Clearly, this will eventually happen
since all agents in Π are assigned in M to their f -house and the priority levels of agents
are strictly decreasing so that we must eventually reach some agent at ∈ P1 such that
M(at) = f(at). However, it is then impossible that at prefers M ′ to M . Finally, by
construction of Π, it follows that Π belongs to X since Π (with appropriate superscripts
for house clones) consists of alternate edges in C(M)\C(M ′) and C(M ′)\C(M).

We have established that for every a ∈ P (M ′,M), there exists a PIP Π(a) leading
out of hj , where hj = M ′(a). Let Γ = {Π(a) : a ∈ P (M ′,M)} and let Γ′ ⊆ Γ contain
only those maximal PIPs in Γ. We will show that there exists an agent d ∈ A such
that Π(d) ∈ Γ′ and cost(Π(d)) < w(d). For, suppose that cost(Π(a)) ≥ w(a) for every
Π(a) ∈ Γ′. Let Π(a) ∈ Γ′ and let Π(a) = 〈h0, a0, h1, a1, ..., hx, ax〉. We define l(Π(a)) = ax.
Also, cost(Π(a)) = w(ax)−w(ax−1)−...−w(a0) ≥ w(a), i.e., w(a)+w(a0)+...+w(ax−1) ≤
w(ax). Now, {a, a0, ..., ax−1} ⊆ P (M ′,M) whilst ax ∈ P (M,M ′). Let D be the connected
component of X containing Π(a) (with appropriate superscripts for house clones). It
follows that D must be a path or cycle whose edges alternate between C(M) and C(M ′).
Clearly, D cannot be an even-length alternating path with more agents than houses, or
an odd-length alternating path whose end edges belong to C(M ′), for otherwise we have
an agent who is unassigned in C(M) and hence in M , a contradiction to the definition
of a well-formed matching. Hence, D is either an (i) even-length alternating path with
more houses than agents, or (ii) an odd-length alternating path whose end edges belong to
C(M), or (iii) a cycle. It is obvious that D contains distinct agents and so we cannot have
overlapping maximal PIPs. Hence, by construction of Γ′, the agents in Π(a), together
with a, but not including l(Π(a)), taken over all Π(a) ∈ Γ′, form a partition of P (M ′,M).
Moreover, for every such a, we have established the existence of some l(Π(a)) ∈ P (M,M ′).
Hence,

16

∑

a∈P (M ′,M)

w(a) =
∑

Π(a)∈Γ′

w(a) +
∑

Π(a)∈Γ′

∑

{

w(a′) : a′ ∈ Π(a) ∧ a′ 6= l(Π(a)
}

≤
∑

Π(a)∈Γ′

{

w(a′) : a′ = l(Π(a))
}

≤
∑

a∈P (M,M ′)

w(a)

It follows that sat(M ′,M) ≤ 0, a contradiction. As a result, cost(Π(d)) < w(d) for
some Π(d) ∈ Γ′. Let hj = M ′(d). Now, if M(d) = f(d), then lines 12-13 of the first stage
of the algorithm would report that no popular matching exists since λmin(d, f(d)) < w(d),
a contradiction. Hence, M(d) = s(d) and hj is (i) better than f(d), or (ii) equal to f(d),
or (iii) between f(d) and s(d) on a’s preference list. In case (i), we obtain the same
contradiction as when M(d) = f(d) since λmin(d, f(d)) < w(d). In case (ii), f(d) = hj .
Since M(d) = s(d), it must be the case that d ∈ fdj+1(hj) for otherwise (d, s(d)) would
have been deleted by line 20 of the first stage of the algorithm. Clearly though, lines
33-34 of the first stage of the algorithm would report that no popular matching exists, a
contradiction. In case (iii), (d, s(d)) would have been deleted by lines 11-12 of the second
stage of the algorithm since λmin(d, s(d)) < w(d), a contradiction. It follows that we
obtain a contradiction in all cases so that M ′ is not more popular than M .

Finally, the next lemma shows that if there is no well-formed matching in the pruned
graph G′′, then no popular matching exists.

Lemma 14. Let G′′ be the pruned graph for a given WCHA instance I. If there is no
well-formed matching in G′′, then no popular matching exists in I.

Proof. Suppose that there exists a popular matching M in I. Now, by Theorem 7, M is a
well-formed matching in G′. Moreover, all edges of M must belong to G′′ by Lemma 11.
However, this implies that M is a well-formed matching in G′′, a contradiction.

We now use the example in Figure 1 to illustrate our algorithm. After the first stage,
we have λ(h1) = 7, λ(h3) = 3 and λ(h4) = 2. We remove the edges (a1, h2) in phase 1 of
the first stage, and (a2, h4) and (a3, h5) in phase 2 of the first stage (all in line 20 of the
first stage) since a1 belongs to fd1

(h1), and a2 and a3 belong to fd3
(h3) respectively. We

also remove the edge (a4, h4) in phase 3 of the first stage (in lines 24-25 of the first stage)
since λmin(a4, h4) = 3 < 2w(a4). No further edges are removed in the second stage.

3.4 Finding a popular matching

We are now left with the task of finding a well-formed matching M in G′′ in order to find
a popular matching if one exists. Note that the removal of edges from G′ by Algorithm
Prune-WCHA effectively reduces the problem to that of finding a popular matching in an
instance of CHA.

Algorithm Popular-CHA

We give a brief recap of Algorithm Popular-CHA, shown in Algorithm 4, for finding a
popular matching or reporting that none exists, given an instance I of CHA [14]. For
consistency with [14], the algorithm pseudocode and the accompanying description in this
subsection assumes that Algorithm Popular-CHA will be applied to G′, however when we

17

Algorithm 4 Algorithm Popular-CHA

1: M := ∅;
2: for each f -house hj do

3: c′j := cj ;
4: if fj ≤ cj then

5: for each ai ∈ f(hj) do

6: M := M ∪ {(ai, hj)};
7: delete ai and its incident edges from G′;
8: end for

9: c′j := cj − fj ;
10: end if

11: end for

12: remove all isolated and full houses, and their incident edges, from G′;
13: compute a maximum matching M ′ in G′ using capacities c′j ;
14: if M ′ is not agent-complete in G′ then

15: output “no popular matching exists”;
16: else

17: M := M ∪ M ′;
18: for each ai ∈ A do

19: hj := f(ai);
20: if fj > cj and |M(hj)| < cj and hj 6= M(ai) then

21: promote ai from M(ai) to hj in M ;
22: end if

23: end for

24: end if

return to the WCHA context in the next subsection, this algorithm will in fact be applied
to G′′. The algorithm begins by using a pre-processing step (lines 2-12) on G′ that matches
each agent to their first-choice house hj whenever fj ≤ cj , so as to satisfy Condition 1(a)
of the following theorem, which is a counterpart of Theorem 7 for CHA:

Theorem 15 ([14]). A matching M is popular in a CHA instance I if and only if

1. for every f -house hj ,

(a) if fj ≤ cj , then f(hj) ⊆ M(hj);

(b) if fj > cj , then |M(hj)| = cj and M(hj) ⊆ f(hj).

2. M is an agent-complete matching (i.e., a matching in which all agents are assigned)
in G′.

The next step of Algorithm 4 computes a maximum matching M ′ in G′, according to
the adjusted house capacities c′j that are defined following pre-processing. The subgraph
G′ can be viewed as an instance of the Upper Degree-Constrained Subgraph problem
(UDCS) [7]. (An instance of UDCS is essentially the same as an instance of CHA, except
that agents have no explicit preferences in the UDCS case; the definition of a matching is
unchanged.) We use Gabow’s algorithm [7] to compute M ′ in G′ and then test whether
M ′ is agent-complete. The pre-allocations are then added to M ′ to give M . As a last step,
we ensure that M also meets Condition 1(b) of Theorem 15. For, suppose that hj ∈ H
is an f -house such that fj > cj . Then by definition, hj cannot be an s-house. Thus if
ak ∈ M(hj) prior to the third for loop, it follows that ak ∈ f(hj). At this stage, if hj is
undersubscribed in M , we repeatedly promote any agent ai ∈ f(hj)\M(hj) from M(ai)
(note that M(ai) must be s(ai) and hence cannot be an f -house hl such that fl > cl) to
hj until hj is full, ensuring that M(hj) ⊆ f(hj).

18

Using Algorithm Popular-CHA for WCHA

We now show how to use Algorithm Popular-CHA in order to find a popular matching or
report that none exists, given an instance of WCHA. Firstly we consider the problem of
trying to assign agents to each f -house hj so that hj satisfies Condition 1 of a well-formed
matching.

Now, if fj ≤ cj , then ensuring that
⋃dj

p=1 fp(hj) ⊆ M(hj) is equivalent to ensuring
Condition 1(a) of Theorem 15. This work is done by lines 2-11 of Algorithm Popular-CHA.
On the other hand, if fj > cj , we need to ensure that those agents with priority at most

dj are assigned to hj in M , i.e., there does not exist any agent a ∈ ⋃dj

p=1 fp(hj)\M(hj).
Now, since line 20 in the first stage of Algorithm Prune-WCHA ensures the removal of the

edge (a, s(a)) for every a ∈ ⋃dj

p=1 fp(hj), it follows that a must be assigned to f(a) if an
agent-complete matching is to exist. This is equivalent to the work done by lines 13-15 of
Algorithm Popular-CHA, which tries to find an agent-complete matching and reports that
no popular matching exists if unsuccessful. Furthermore, lines 18-23 of Algorithm Popular-

CHA also ensure that if fj > cj , then |M(hj)| = cj and M(hj)\
⋃dj

p=1 fp(hj) ⊆ fdj+1(hj).
Lastly, we need to ensure that each agent is assigned to either f(a) or s(a) and it is evident
that running Algorithm Popular-CHA on the pruned graph G′′ does this. Hence, we can
find a popular matching in WCHA, if one exists, by running Algorithm Popular-CHA
on G′′. As illustration, if we run Algorithm Popular-CHA on the example in Figure 1
after edge removals through Algorithm Prune-WCHA, then Algorithm Popular-CHA will
return the following matching M = {(a1, h1), (a2, h3), (a3, h3), (a4, h5), (a5, h4), (a6, h4)}
which may be verified to be popular.

Analysis of the algorithm for WCHA

Let us now consider the time taken to find a popular matching or to report that no such
matching exists, given an instance of WCHA. First of all, it takes O(m) time to define
the f - and s-houses, as discussed in Section 2. Let us then consider the time complexity
of Algorithm Prune-WCHA. It is clear that the subgraph G′ can be constructed in O(m)
time and has O(n1) edges since each agent has degree 2 in G′. Clearly, in the first stage of
the algorithm, initialising λ(hj) for each f -house takes O(n2) time. Next, we iterate over
every agent a to define λmin(a, f(a)). In order to do so, we traverse the preference list of
a to find the minimum cost of all PIPs among all houses that a prefers to f(a), if such
houses exist. Even though this occurs in phases, with the total number of phases equal
to the number of priority levels, the computation time for this is bounded by the total
length of the preference lists. Hence, defining λmin(a, f(a)) for every agent a takes O(m)
time overall.

In order to define λz(hj) (and hence λ(hj)) for each f -house hj , we need to iterate over
every agent a such that a ∈ fz(hj). Again, the time complexity for this is bounded by the
total length of preference lists so that it takes O(m) time overall to define λz(hj) (and hence
λ(hj)) for each f -house and to remove those edges which cannot belong to any popular
matching (in lines 20 and 24-25 of the first stage of the algorithm). By a similar argument,
the second stage of the algorithm also takes O(m) time so that Algorithm Prune-WCHA
takes O(m) time overall. Now, it takes O(

√
Cn1 + m) time, using Algorithm Popular-

CHA, to find a well-formed matching (if one exists) in G′′, where C is the total capacity
of the houses. It follows that we obtain the following results for the time complexity of
finding a popular matching in WCHA.

Theorem 16. Let I be an instance of WCHA. Then, we can find a popular matching in
I, or determine that none exists, in O(

√
Cn1 + m) time.

19

3.5 Finding a maximum popular matching

It remains to consider the problem of finding a maximum popular matching in WCHA. Let
us run Algorithm Label-f and Algorithm Prune-WCHA as before to define f - and s-houses
and to delete certain edges which cannot belong to any popular matching. We then adopt
a similar algorithm to that in [14] for the analogous problem in CHA as follows.

That is, let A1 be the set of all agents a with s(a) = l(a), and let A2 = A\A1.
Our objective is to find a well-formed matching in G′′ which minimises the number
of A1-agents who are assigned to their last resort house. We let A′ denote the set
{

a ∈ ⋃dj

p=1 fp(hj) : hj ∈ H
}

. We begin by carrying out a pre-processing step on G′′ to

compute a matching M0 that assigns each agent in A′ to his f -house. We then try to find
a maximum matching M ′ in G′′ that only involves the A2\A′-agents and their incident
edges. If M ′ is not an agent-complete matching of A2\A′-agents, then clearly I admits
no popular matching. Otherwise, we remove all edges in G′′ that are incident to a last
resort house, and try to assign additional A1\A′-agents to their f -houses by repeatedly
finding an augmenting path with respect to M ′ using Gabow’s algorithm [7] in a simi-
lar approach to that for CHA in [14]. Let M ′′ be the matching obtained by augmenting
M ′. If any A1-agent remains unassigned at the end of this step, we simply assign him to
his last resort house, to obtain an agent-complete matching of A\A′-agents in G′′. Let
M = M0 ∪ M ′′. If any agent a belonging to A\A′ is not assigned to his f -house hj but
hj is undersubscribed in M , we promote a from M(a) to hj , repeating this process as
necessary. Then, clearly the matching M obtained will be a well-formed matching in G′′,
and hence popular by Lemma 13. It follows that M is a maximum popular matching,
giving the following theorem.

Theorem 17. Given an instance of WCHA, we can find a maximum popular matching,
or determine that none exists, in O(

√
Cn1 + m) time.

3.6 “Cloning” versus our direct approach

A straightforward solution to finding a popular matching, given an instance I of WCHA,
may be to use “cloning” to create an instance J of WHAT, and then to apply the
O(min(k

√
n, n)m) algorithm of [17] to J . Firstly, we create cj clones h1

j , h
2
j , ..., h

cj

j of
each house hj in I, where each clone has a capacity of 1. In addition, we replace each
occurrence of hj in a given agent’s preference list with the sequence h1

j , h
2
j , ..., h

cj

j , the
elements of which are listed in a single tie at the point where hj appears. Let GJ denote
the underlying graph of J . Then, GJ contains n′ = n1 + C nodes. For each ai ∈ A, let
Ai denote the set of acceptable houses for ai, and let cmin = min {cj : hj ∈ H}. Then the
number of edges in GJ is m′ =

∑

ai∈A

∑

hj∈Ai
cj ≥ mcmin. Hence, the complexity of ap-

plying the algorithm of [17] to J is Ω(min(k
√

n1 + C,n1+C)mcmin). Now, the complexity
of our algorithm may be rewritten as O(

√
Cn1) or O(m) depending on which component

dominates the running time. If n1 + C ≥ k
√

n1 + C, then the cloning approach takes
Ω(k

√
n1 + Cmcmin)) time which is slower than our algorithm by a factor of Ω(kcmin).

Otherwise, if n1 + C < k
√

n1 + C, then the cloning approach takes Ω(mcmin(n1 + C))
time which is slower than our algorithm by a factor of Ω(

√
n1 + Ccmin). It follows that

the cloning method is slower than our direct approach for all possible cases.

4 Open problem

We conclude with the following open problem. Suppose that we are presented with an
instance J of WCHA in which the preference lists of agents are allowed to contain ties,

20

i.e., an instance of WCHAT. Is the problem of finding a popular matching (or reporting
that none exists) in J then solvable in polynomial time?

Acknowledgement

We would like to thank Rob Irving and the anonymous referees for detailed comments on
earlier versions of this paper.

References

[1] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

[2] D.J. Abraham, K. Cechlárová, D.F. Manlove, and K. Mehlhorn. Pareto optimality
in house allocation problems. In Proceedings of ISAAC 2004: the 15th Annual Inter-
national Symposium on Algorithms and Computation, volume 3341 of Lecture Notes
in Computer Science, pages 3–15. Springer, 2004.

[3] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM
Journal on Computing, 37:1030–1045, 2007.

[4] D.J. Abraham and T. Kavitha. Dynamic matching markets and voting paths. In
Proceedings of SWAT 2006: the 10th Scandinavian Workshop on Algorithm Theory,
volume 4059 of Lecture Notes in Computer Science, pages 65–76. Springer, 2006.

[5] G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.

[6] K.S. Chung. On the existence of stable roommate matchings. Games and Economic
Behavior, 33(2):206–230, 2000.

[7] H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of STOC ’83: the 15th Annual
ACM Symposium on Theory of Computing, pages 448–456. ACM, 1983.

[8] P. Gärdenfors. Match making: assignments based on bilateral preferences. Be-
havioural Science, 20:166–173, 1975.

[9] C.-C. Huang, T. Kavitha, D. Michail, and M. Nasre. Bounded unpopularity match-
ings. In Proceedings of SWAT 2008: the 12th Scandinavian Workshop on Algorithm
Theory, volume 5124 of Lecture Notes in Computer Science, pages 127–137. Springer,
2008.

[10] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

[11] T. Kavitha and M. Nasre. Optimal popular matchings. In Proceedings of Match-UP
2008: Workshop on Matching Under Preferences – Algorithms and Complexity, held
at ICALP 2008, pages 46–54, 2008.

[12] T. Kavitha and C.D. Shah. Efficient algorithms for weighted rank-maximal matchings
and related problems. In Proceedings of ISAAC 2006: the Seventeenth International
Symposium on Algorithms and Computation, volume 4288 of Lecture Notes in Com-
puter Science, pages 153–162. Springer, 2006.

21

[13] M. Mahdian. Random popular matchings. In Proceedings of EC ’06: the 7th ACM
Conference on Electronic Commerce, pages 238–242. ACM, 2006.

[14] D.F. Manlove and C.T.S. Sng. Popular matchings in the Capacitated House Allo-
cation problem. In Proceedings of ESA ’06: the 14th Annual European Symposium
on Algorithms, volume 4168 of Lecture Notes in Computer Science, pages 492–503.
Springer, 2006.

[15] R.M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin cri-
teria for matching problems with one-sided preferences. In Proceedings of LATIN
2008: the 8th Latin-American Theoretical INformatics symposium, volume 4957 of
Lecture Notes in Computer Science, pages 593–604. Springer, 2008.

[16] E. McDermid and R.W. Irving. Popular matchings: Structure and algorithms. Tech-
nical Report TR-2008-292, University of Glasgow, Department of Computing Science,
2008.

[17] J. Mestre. Weighted popular matchings. In Proceedings of ICALP ’06: the 33rd
International Colloquium on Automata, Languages and Programming, volume 4051
of Lecture Notes in Computer Science, pages 715–726. Springer, 2006.

[18] C.T.S. Sng and D.F. Manlove. Popular matchings in the weighted capacitated house
allocation problem. In Proceedings of ACiD 2007: the 3rd Algorithms and Complexity
in Durham workshop, volume 9 of Texts in Algorithmics, pages 129–140. College
Publications, 2007.

22

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/25731/

