9 research outputs found

    Response of Antarctic terrestrial microarthropods to long-term climate manipulations

    No full text
    The terrestrial biota of the Antarctic Peninsula region are experiencing marked changes in climate, especially rising temperatures, precipitation, and UV-B radiation-a combination unique worldwide. These changes, combined with the inherent simplicity of terrestrial communities, have led to their use as "model systems" to predict the future climate change responses of biota at lower latitudes. However, studies integrating responses at different levels of the community trophic structure are lacking. We report here the consequences on the soil microarthropod community of a four-year, multivariate, climate-manipulation experiment carried out over vegetation near Palmer Station, Anvers Island, western Antarctic Peninsula. The experiment used a multifactorial randomized-block design, deploying filters to raise temperatures and reduce ultraviolet (UV)-B (280-320 nm) or both UV-B and UV-A (320-400 nm) radiation of existing vegetation, with further water and fertilizer amendment treatments. Seven microarthropod species recovered in sufficient numbers for statistical analyses showed considerable spatial aggregation independent of treatment, a feature typical of many soil invertebrates. Analyses using negative binomial generalized linear modeling identified further significant and consistent treatment impacts on both individual species and species groups. Relative to controls, manipulations increasing temperature decreased numbers of microarthropods (particularly Collembola), as did exposure to near-ambient levels of UV radiation (separate significant effects for both UV-A and UV-B), while water amendment increased numbers. The impacts of temperature and water are consistent with our understanding of the importance of these two environmental variables and their interaction in Antarctic terrestrial ecosystems. The negative impact of UV (-A or -B) on arthropod heterotroph and detritivore populations in the Antarctic terrestrial food web is likely to be a secondary consequence of UV impact on vegetation characteristics. This is, again, consistent with general predictions of the impact of changing UV climate on ecosystem function

    Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field.

    No full text
    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants

    Responses of terrestrial Antarctic ecosystems to climate change

    No full text
    Antarctic terrestrial biota are generally limited by the inexorably linked environmental factors of low summer temperature and lack of available water. However, in parts of the Antarctic, both these factors are changing rapidly on contemporary timescales. Terrestrial biota have concurrently been faced with changes in the timing of UV-B maxima associated with spring ozone depletion. The region of the Antarctic Peninsula and Scotia Arc has experienced one of the most rapid rates of environmental warming seen worldwide over the last 30–50 years. Together with local changes in precipitation, this has resulted in a rapid reduction in extent and thinning of many ice-fields and glaciers, exposing new terrain for colonisation while, at the same time, altering patterns of water availability in terrestrial habitats. The rapid development of communities on newly-exposed ground is also facilitated by the existence of soil propagule banks, which contain propagules of both local and exotic origin. In this paper we collate and review evidence from a range of observational and manipulative studies that investigate the effect of climate change, especially increased temperature, on the processes of colonisation and subsequent community development by plants in the Antarctic. Biological changes that have been associated with climate change are visible in the form of expansions in range and local population numbers amongst elements of the flora. Environmental manipulation experiments further demonstrate the possibility of large and rapid species and community responses to climate amelioration, with many resident biota responding positively, at least in the absence of increased competition from exotic colonists. Manipulation studies are also starting to elucidate more subtle responses to climate changes, at levels ranging from cell biochemistry to habitat and food web structure. Integrating such subtle responses is vital to improving our ability to understand the consequences of climate change, as these may lead to much greater consequential impacts on communities and ecosystems
    corecore