344 research outputs found

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Asymptotically Free Non-Abelian Gauge Theories With Fermions and Scalars As Alternatives to QCD

    Get PDF
    In this paper we construct non-Abelian gauge theories with fermions and scalars that nevertheless possess asymptotic freedom.The scalars are taken to be in a chiral multiplet transforming as (2,2)(2,2) under SU(2)LSU(2)RSU(2)_L\otimes SU(2)_R and transforming as singlets under the colour SU(3) group. We consider two distinct scenarios, one in which the additional scalars are light and another in which they are heavier than half the Z-boson mass. It is shown that asymptotic freedom is obtained without requiring that all additional couplings keep fixed ratios with each other. It is also shown that both scenarios can not be ruled out by what are considered standard tests of QCD like R- parameter, g-2 for muons or deep inelastic phenomena. The light mass scenario is however ruled out by high precision Z-width data (and only by that one data).The heavy mass scenario is still viable and is shown to naturally pass the test of flavour changing neutral currents. It also is not ruled out by precision electroweak oblique parameters. Many distinctive experimental signatures of these models are also discussed.Comment: 37 pages in LATEX with 10 fig

    Localization for Yang-Mills Theory on the Fuzzy Sphere

    Full text link
    We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.Comment: 55 pages. V2: references added; V3: minor corrections, reference added; Final version to be published in Communications in Mathematical Physic

    THE HIGGS-YUKAWA MODEL IN CURVED SPACETIME

    Get PDF
    The Higgs-Yukawa model in curved spacetime (renormalizable in the usual sense) is considered near the critical point, employing the 1/N1/N--expansion and renormalization group techniques. By making use of the equivalence of this model with the standard NJL model, the effective potential in the linear curvature approach is calculated and the dynamically generated fermionic mass is found. A numerical study of chiral symmetry breaking by curvature effects is presented.Comment: LaTeX, 9 pages, 1 uu-figur

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD

    Chirality effects in carbon nanotubes

    Full text link
    We consider chirality related effects in optical, photogalvanic and electron-transport properties of carbon nanotubes. We show that these properties of chiral nanotubes are determined by terms in the electron effective Hamiltonian describing the coupling between the electron wavevector along the tube principal axis and the orbital momentum around the tube circumference. We develop a theory of photogalvanic effects and a theory of d.c. electric current, which is linear in the magnetic field and quadratic in the bias voltage. Moreover, we present analytic estimations for the natural circular dichroism and magneto-spatial effect in the light absorption.Comment: 23 pages, 3 figure

    Effective Action for the Quark-Meson Model

    Full text link
    The scale dependence of an effective average action for mesons and quarks is described by a nonperturbative flow equation. The running couplings lead to spontaneous chiral symmetry breaking. We argue that for strong Yukawa coupling between quarks and mesons the low momentum physics is essentially determined by infrared fixed points. This allows us to establish relations between various parameters related to the meson potential. The results for fπf_\pi and \VEV{\olpsi\psi} are not very sensitive to the poorly known details of the quark--meson effective action at scales where the mesonic bound states form. For realistic constituent quark masses we find fπf_\pi around 100\MeV.Comment: 56 pages (including 10 figures and 1 table), uses epsf.st

    Operator Analysis of L=1 Baryon Masses in Large N_c QCD

    Get PDF
    We consider in detail the mass operator analysis for the nonstrange L=1 excited baryons in large N_c QCD. We present a straightforward procedure for constructing the large N_c baryon wavefunctions, and provide complete analytic expressions for the matrix elements of all the independent isosinglet mass operators. We discuss the relationship between the old-fashioned operator analyses based on nonrelativistic SU(6) symmetry and the modern large N_c approach, which has a firmer theoretical foundation. We then suggest a possible dynamical interpretation for the subset of operators preferred strongly by the data.Comment: 36 pages LaTe

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2

    Two-Loop O(alpha_s G_F M_Q^2) Heavy-Quark Corrections to the Interactions between Higgs and Intermediate Bosons

    Full text link
    By means of a low-energy theorem, we analyze at O(alpha_s G_F M_Q^2) the shifts in the Standard-Model W^+W^-H and ZZH couplings induced by virtual high-mass quarks, Q, with M_Q >> M_Z, M_H, which includes the top quark. Invoking the improved Born approximation, we then find the corresponding corrections to various four- and five-point Higgs-boson production and decay processes which involve the W^+W^-H and ZZH vertices with one or both of the gauge bosons being connected to light-fermion currents, respectively. This includes e^+e^- -> f anti-f H via Higgs-strahlung, via W^+W^- fusion (with f = nu_e), and via ZZ fusion (with f = e), as well as H -> 2V -> 4f (with V = W, Z).Comment: 20 pages (Latex); Physical Review D (to appear
    corecore