38 research outputs found

    Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial

    Get PDF
    <p><b>Background and Purpose:</b>Although magnesium is neuroprotective in animal stroke models, no clinical benefit was confirmed in the Intravenous Magnesium Efficacy in Stroke (IMAGES) trial of acute stroke patients. The Magnetic Resonance in IMAGES (MR IMAGES) substudy investigated the effects of magnesium on the imaging surrogate outcome of infarct growth.</p> <p><b>Methods:</b> IMAGES trial patients in participating centers were randomized to receive either intravenous magnesium or placebo within 12 hours of stroke onset. Infarct growth was defined as volume difference between baseline diffusion-weighted imaging and day 90 fluid-attenuated inversion recovery image lesions. Patients who died were imputed the largest infarct growth observed.</p> <p><b>Results:</b> Among the 90 patients included in the primary analysis, there was no difference in infarct growth (median absolute growth, P=0.639; median percentage growth, P=0.616; proportion with any growth, P=0.212) between the 46 treated with magnesium and 44 with placebo. Infarct growth correlated with NIHSS score change from baseline to day 90. There was a trend showing baseline serum glucose correlated with infarct growth with magnesium treatment, but not in the placebo group. The mismatch frequency was reduced from 73% to 47% by increasing the mismatch threshold from >20% to >100% of core volume.</p> <p><b>Conclusions:</b> Infarct growth, confirmed here as a surrogate for clinical progression, was similar between magnesium and placebo treatment, paralleling the main IMAGES trial clinical outcomes. Glucose was a covariate for infarct growth with magnesium treatment. A more stringent mismatch threshold to define penumbra more appropriately would have excluded half of the patients in this 12-hour time window stroke study.</p&gt

    Supplementary Material for: Apparent Diffusion Coefficient Signal Intensity Ratio Predicts the Effect of Revascularization on Ischemic Cerebral Edema

    No full text
    <b><i>Background:</i></b> Apparent diffusion coefficient (ADC) imaging is a biomarker of cytotoxic injury that predicts edema formation and outcome after ischemic stroke. It therefore has the potential to serve as a “tissue clock” to describe the extent of ischemic injury and potentially predict response to therapy. The goal of this study was to determine the relationship between baseline ADC signal intensity, revascularization, and edema formation. <b><i>Methods:</i></b> We examined the ADC signal intensity ratio (ADCr) of the stroke lesion (defined as the baseline DWI hyperintense region) compared to the contralateral normal hemisphere in 65 subjects from the Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy trial. The associations between ADCr, neurologic outcome, and cerebral edema were examined. Finally, we explored the interaction between baseline ADCr and vessel recanalization at day 7 on post-stroke edema. <b><i>Results:</i></b> We found that lower initial ADCr was associated with a worse outcome on the modified Rankin Scale (mRS) at 90 days (52.2% of those with ADCr <64% were mRS 5–6 vs. 19.1% with ADCr ≥64%, <i>p =</i> 0.006). Those subjects with reconstitution of flow distal to the initial vessel occlusion showed greater normalization of ADCr on follow-up scan (increase in ADCr of 16.4 ± 2.07 vs. 1.99 ± 4.33%, <i>p =</i> 0.0039). In those patients with low baseline ADCr, successful revascularization was associated with reduced edema (median swelling volume 164 mL [interquartile range (IQR) 53.3–190 mL] vs. 20.7 mL [IQR 3.20–55.1 mL], <i>p =</i> 0.024). <b><i>Conclusions:</i></b> This study reaffirms the association of ADCr with outcome after stroke, supports the idea that reperfusion may attenuate rather than enhance post-stroke edema, and indicates that the degree of edema with and without revascularization may be predicted by ADCr
    corecore