2 research outputs found

    The crystal computer - computing with inorganic cellular frameworks and nets

    No full text
    The enormous potential of parallel computing has led to the first prototype devices being constructed. However, all the examples to date rely on complicated chemical and/or physical manipulations, and hence do not lend themselves to the kind of widespread investigation necessary to advance the field. This article presents a new paradigm for parallel computing: the use of solid, single crystalline materials as cellular automata suggesting the idea of the “Crystal Computer,” now possible due to a new class of crystalline cellular materials that undergo single-crystal-to-single-crystal (SC-SC) oxidation and reduction (REDOX) reactions. Two avenues are proposed for investigation: reversible single-crystal to single-crystal electronic transformations and solid-state spin transfer within spin-crossover complexes. Both schemes allow computation to occur in three dimensions, within cheap and easy to assemble materials and using commonplace techniques for input and readout

    Unconventional computing in the built environment

    No full text
    The Synthetic Biology engineering based approach to living systems intersects with the new interdisciplinary field of unconventional computing and suggests a new method for design in architectural practice. Living systems possess unique properties that are not present in digital/mechanical systems - their sensors and effectors are intrinsically coupled, perform parallel forms of computation, are able to respond to unpredictable circumstances, respond in real time to environmental changes, and possess a robustness that can result in evolutionary change. This paper proposes how living technology, operating through the principles of unconventional computing could offer new environmentally remediating materials for architectural practice using a bottom-up approach to the construction of buildings and other human-made interventions
    corecore