21 research outputs found

    Effects of proportional assisted ventilation on exercise performance in idiopathic pulmonary fibrosis patients

    Get PDF
    SummaryBackgroundPatients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory limitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown.ObjectiveThe present study assessed the effect of ventilatory support using proportional assist ventilation (PAV) on exercise capacity in patients with IPF.MethodsTen patients (61.2±9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal exercise.ResultsOur data show that patients presented a limited exercise capacity (9.7±3.8mLO2/kg/min). Submaximal test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1±8.8min, 5.6±4.7 and 4.5±3.8min; p<0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p<0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis

    Lung hyperinflation stimulates the release of inflammatory mediators in spontaneously breathing subjects

    Get PDF
    Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m²). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-&#945;, IL-1&#946;, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-&#945;: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1&#946;: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects

    Comparison of two questionnaires which measure the health-related quality of life of idiopathic pulmonary fibrosis patients

    Get PDF
    The objective of the present study was to determine if there is a health-related quality of life (HRQL) instrument, generic or specific, that better represents functional capacity dysfunction in idiopathic pulmonary fibrosis (IPF) patients. HRQL was evaluated in 20 IPF patients using generic and specific questionnaires (Medical Outcomes Short Form 36 (SF-36) and Saint George's Respiratory Questionnaire (SGRQ), respectively). Functional status was evaluated by pulmonary function tests, 6-min walking distance test (6MWDT) and dyspnea indexes (baseline dyspnea index) at rest and after exercise (modified Borg scale). There was a restrictive pattern with impairment of diffusion capacity (total lung capacity, TLC = 71.5 ± 15.6%, forced vital capacity = 70.4 ± 19.4%, and carbon monoxide diffusing capacity = 41.5 ± 16.2% of predicted value), a reduction in exercise capacity (6MWDT = 435.6 ± 95.5 m) and an increase of perceived dyspnea score at rest and during exercise (6 ± 2.5 and 7.1 ± 1.3, respectively). Both questionnaires presented correlation with some functional parameters (TLC, forced expiratory volume in 1 s and carbon monoxide diffusing capacity) and the best correlation was with TLC. Almost all of the SGRQ domains presented a strong correlation with functional status, while in SF-36 only physical function and vitality presented a good correlation with functional status. Dyspnea index at rest and 6MWDT also presented a good correlation with HRQL. Our results suggest that a specific instead of a generic questionnaire is a more appropriate instrument for HRQL evaluation in IPF patients and that TLC is the functional parameter showing best correlation with HRQL

    Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis

    No full text
    Because the superficial lymphatics in the lungs are distributed in the subpleural, interlobular and peribroncovascular interstitium, lymphatic impairment may occur in the lungs of patients with idiopathic interstitial pneumonias (IIPs) and increase their severity. We investigated the distribution of lymphatics in different remodeling stages of IIPs by immunohistochemistry using the D2-40 antibody. Pulmonary tissue was obtained from 69 patients with acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD, N = 24), cryptogenic organizing pneumonia/organizing pneumonia (COP/OP, N = 6), nonspecific interstitial pneumonia (NSIP/NSIP, N = 20), and idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP, N = 19). D2-40+ lymphatic in the lesions was quantitatively determined and associated with remodeling stage score. We observed an increase in the D2-40+ percent from DAD (6.66 ± 1.11) to UIP (23.45 ± 5.24, P = 0.008) with the advanced process of remodeling stage of the lesions. Kaplan-Meier survival curves showed a better survival for patients with higher lymphatic D2-40+ expression than 9.3%. Lymphatic impairment occurs in the lungs of IIPs and its severity increases according to remodeling stage. The results suggest that disruption of the superficial lymphatics may impair alveolar clearance, delay organ repair and cause severe disease progress mainly in patients with AIP/DAD. Therefore, lymphatic distribution may serve as a surrogate marker for the identification of patients at greatest risk for death due to IIPs

    Association among cardiopulmonary and metabolic rehabilitation, arrhythmias, and myocardial ischemia responses of patients with HFpEF or HFmrEF

    Get PDF
    There's limited evidence of the potential benefits of cardiopulmonary and metabolic rehabilitation (CPMR) in patients with heart failure with preserved ejection fraction (HFpEF) or mildly reduced ejection fraction (HFmrEF) and coronary artery disease (CAD). The aim of this study was to investigate the impact of CPMR on the myocardial ischemia response (MIR), exercise-induced arrhythmias (EIA), New York Heart Association (NYHA) functional class, heart rate recovery (HRR), Borg CR10 perceived symptoms, and the SF-36 physical and mental health summary scores. A prospective cohort study was conducted with 106 patients undergoing 12 weeks of CPMR who completed two exercise tests pre- and post-CPMR: 1) maximum incremental test (CPX) and 2) submaximal constant load test (SUB). After CPMR, the effects on MIR, EIA, NYHA functional class, and HRR during both tests were analyzed. There was a significant change in NYHA functional classes after CPMR, with 96% of the patients in class I (vs 62% pre-CPMR, P<0.0001), 4% in class II (vs 32%), and none in class III (vs 6%). There was a significant reduction in the frequency of EIA (P<0.05) and MIR (P<0.001) and a significantly improved performance on both CPX and SUB tests (P<0.0001). Lastly, there was significant progress in the recovery metrics like HRR (P<0.0001), the Borg CR10 (P<0.0001), and the SF-36 summary scores (P<0.0001). The CPMR resulted in a significant decrease in EIA, delayed ischemia threshold in CPX and SUB tests, increased functional capacity, and improved quality of life

    Short-term effects of stored homologous red blood cell transfusion on cardiorespiratory function and inflammation: an experimental study in a hypovolemia model

    No full text
    The pathophysiological mechanisms associated with the effects of red blood cell (RBC) transfusion on cardiopulmonary function and inflammation are unclear. We developed an experimental model of homologous 14-days stored RBC transfusion in hypovolemic swine to evaluate the short-term effects of transfusion on cardiopulmonary system and inflammation. Sixteen healthy male anesthetized swine (68±3.3 kg) were submitted to controlled hemorrhage (25% of blood volume). Two units of non-filtered RBC from each animal were stored under blood bank conditions for 14 days. After 30 min of hypovolemia, the control group (n=8) received an infusion of lactated Ringer's solution (three times the removed volume). The transfusion group (n=8) received two units of homologous 14-days stored RBC and lactated Ringer's solution in a volume that was three times the difference between blood removed and blood transfusion infused. Both groups were followed up for 6 h after resuscitation with collection of hemodynamic and respiratory data. Cytokines and RNA expression were measured in plasma and lung tissue. Stored RBC transfusion significantly increased mixed oxygen venous saturation and arterial oxygen content. Transfusion was not associated with alterations on pulmonary function. Pulmonary concentrations of cytokines were not different between groups. Gene expression for lung cytokines demonstrated a 2-fold increase in mRNA level for inducible nitric oxide synthase and a 0.5-fold decrease in mRNA content for IL-21 in the transfused group. Thus, stored homologous RBC transfusion in a hypovolemia model improved cardiovascular parameters but did not induce significant effects on microcirculation, pulmonary inflammation and respiratory function up to 6 h after transfusion
    corecore