20 research outputs found
Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia
Introduction Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD.Methods We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses.Results Symptomatic mutation carriers had lower NPTX2 concentrations (median 643pg/mL, IQR (301-872)) than presymptomatic carriers (1003pg/mL (624-1358), p<0.001) and non-carriers (990pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage.Discussion We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.Neuro Imaging Researc
Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome
Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients’ heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways
Erratum: Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome (J. Exp. Med. (2020) 217:6 Doi:10.1084/jem.20191804)
The authors regret that in the original version of Table S1, the column for patient 12 was mistakenly duplicated in the column for patient 8. The online Table S1 PDF has been corrected. The error appears only in PDFs downloaded before June 4, 2020
The wide-field, multiplexed, spectroscopic facility WEAVE: survey design, overview, and simulated implementation
Instrumentatio
