247 research outputs found

    Anisotropic dark energy stars

    Full text link
    A model of compact object coupled to inhomogeneous anisotropic dark energy is studied. It is assumed a variable dark energy that suffers a phase transition at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff equations are integrated to know the structure of these objects. The anisotropy is concentrated on a thin shell where the phase transition takes place, while the rest of the star remains isotropic. The family of solutions obtained depends on the coupling parameter between the dark energy and the fermion matter. The solutions share several features in common with the gravastar model. There is a critical coupling parameter that gives non-singular black hole solutions. The mass-radius relations are studied as well as the internal structure of the compact objects. The hydrodynamic stability of the models is analyzed using a standard test from the mass-radius relation. For each permissible value of the coupling parameter there is a maximum mass, so the existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in Astrophysics & Space Scienc

    CP--odd Correlation in the Decay of Neutral Higgs Boson into ZZZZ, W+WW^+W^-, or ttˉt{\bar t}

    Full text link
    We investigate the possibility of detecting CP--odd angular correlations in the various decay modes of the neutral Higgs boson including the modes of a ZZZZ pair, a W+WW^+W^- pair, or a heavy quark pair. It is a natural way to probe the CP character of the Higgs boson once it is identified. Final state interactions (i.e. the absorptive decay amplitude) is not required in such correlations. As an illustrative example we take the fundamental source of the CP nonconservation to be in the Yukawa couplings of the Higgs boson to the heavy fermions. A similar correlation in the process e+el+lHe^+e^- \to l^+ l^- H is also proposed. Our analysis of these correlations will be useful for experiments in future colliders such as LEP II, SSC, LHC or NLC.Comment: 16 pages, plus 8 postscript graphs not posted befor

    Criticality and Bifurcation in the Gravitational Collapse of a Self-Coupled Scalar Field

    Get PDF
    We examine the gravitational collapse of a non-linear sigma model in spherical symmetry. There exists a family of continuously self-similar solutions parameterized by the coupling constant of the theory. These solutions are calculated together with the critical exponents for black hole formation of these collapse models. We also find that the sequence of solutions exhibits a Hopf-type bifurcation as the continuously self-similar solutions become unstable to perturbations away from self-similarity.Comment: 18 pages; one figure, uuencoded postscript; figure is also available at http://www.physics.ucsb.edu/people/eric_hirschman

    Nonlinear Realization of Chiral Symmetry on the Lattice

    Full text link
    We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.Comment: 34 pages, 2 figures, revised version to be published in J. High Energy Phys. (changes in the 1st paragraph, additional descriptions on the nature of the coordinate singularities in Sec.2, references added

    Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins

    Full text link
    New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins s interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank n(n (n=s-\frac12$) antisymmetric w.r.t. n pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles

    Natural Theories of Ultra-Low Mass PNGB's: Axions and Quintessence

    Full text link
    We consider the Wilson Line PNGB which arises in a U(1)^N gauge theory, abstracted from a latticized, periodically compactified extra dimension U(1). Planck scale breaking of the PNGB's global symmetry is suppressed, providing natural candidates for the axion and quintessence. We construct an explicit model in which the axion may be viewed as the 5th component of the U(1)_Y gauge field in a 1+4 latticized periodically compactified extra dimension. We also construct a quintessence PNGB model where the ultra-low mass arises from Planck-scale suppressed physics itself.Comment: 20 pages, fixed typo and reference

    Chiral Perturbation Theory for SU(3) Breaking in Heavy Meson Systems

    Full text link
    The SU(3) breaking effects due to light quark masses on heavy meson masses, decay constants (FD,FDsF_{D}, F_{D_{s}}) and the form factor for semileptonic BD()lνˉl\overline{B}\rightarrow D^{(\ast)} l\bar{\nu}_{l} transitions are formulated in chiral perturbation theory, using a heavy meson effective Lagrangian and expanding in inverse powers of the heavy meson mass. To leading order in this expansion, the leading chiral logarithms and the required counterterms are determined. At this level, a non-analytic correction to the mass splittings of O(p3){\cal O}(p^3) appears, similar the the one found in light baryons. The correction to FDs/FDF_{D_{s}}/F_{D} is roughly estimated to be of the order of 10%10\% and, therefore, experimentally accessible, while the correction to the form factor is likely to be substantially smaller. We explicitly check that the heavy quark symmetry is preserved by the chiral loops.Comment: 21 page

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Topcolor-Assisted Supersymmetry

    Get PDF
    It has been known that the supersymmetric flavor changing neutral current problem can be avoided if the squarks take the following mass pattern, namely the first two generations with the same chirality are degenerate with masses around the weak scale, while the third generation is very heavy. We realize this scenario through the supersymmetric extension of a topcolor model with gauge mediated supersymmetry breaking.Comment: 12 pages, latex, no figure

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
    corecore