1,371 research outputs found

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    Interplay of quantum magnetic and potential scattering around Zn or Ni impurity ions in superconducting cuprates

    Full text link
    To describe the scattering of superconducting quasiparticles from non-magnetic (Zn) or magnetic (Ni) impurities in optimally doped high Tc_c cuprates, we propose an effective Anderson model Hamiltonian of a localized electron hybridizing with dx2y2d_{x^2-y^2}-wave BCS type superconducting quasiparticles with an attractive scalar potential at the impurity site. Due to the strong local antiferromagnetic couplings between the original Cu ions and their nearest neighbors, the localized electron in the Ni-doped materials is assumed to be on the impurity sites, while in the Zn-doped materials the localized electron is distributed over the four nearest neighbor sites of the impurities with a dominant dx2y2d_{x^2-y^2} symmetric form of the wave function. With Ni impurities, two resonant states are formed above the Fermi level in the local density of states at the impurity site, while for Zn impurities a sharp resonant peak below the Fermi level dominates in the local density of states at the Zn site, accompanied by a small and broad resonant state above the Fermi level mainly induced by the potential scattering. In both cases, there are no Kondo screening effects. The local density of states and their spatial distribution at the dominant resonant energy around the substituted impurities are calculated for both cases, and they are in good agreement with the experimental results of scanning tunneling microscopy in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities, respectively.Comment: 24 pages, Revtex, 8 figures, submitted to Physical Review B for publication. Sub-ject Class: Superconductivity; Strongly Correlated Electron

    Nonconstant electronic density of states tunneling inversion for A15 superconductors: Nb3Sn

    Full text link
    We re-examine the tunneling data on A15 superconductors by performing a generalized McMillan-Rowell tunneling inversion that incorporates a nonconstant electronic density of states obtained from band-structure calculations. For Nb3Sn, we find that the fit to the experimental data can be slightly improved by taking into account the sharp structure in the density of states, but it is likely that such an analysis alone is not enough to completely explain the superconducting tunneling characteristics of this material. Nevertheless, the extracted Eliashberg function displays a number of features expected to be present for the highest quality Nb3Sn samples.Comment: 11 pages, 11 figure

    Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface

    Full text link
    Electromigration-induced flow of islands and voids on the Cu(001) surface is studied at the atomic scale. The basic drift mechanisms are identified using a complete set of energy barriers for adatom hopping on the Cu(001) surface, combined with kinetic Monte Carlo simulations. The energy barriers are calculated by the embedded atom method, and parameterized using a simple model. The dependence of the flow on the temperature, the size of the clusters, and the strength of the applied field is obtained. For both islands and voids it is found that edge diffusion is the dominant mass-transport mechanism. The rate limiting steps are identified. For both islands and voids they involve detachment of atoms from corners into the adjacent edge. The energy barriers for these moves are found to be in good agreement with the activation energy for island/void drift obtained from Arrhenius analysis of the simulation results. The relevance of the results to other FCC(001) metal surfaces and their experimental implications are discussed.Comment: 9 pages, 13 ps figure

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics

    Get PDF
    Introduction: Reliable cerebrospinal fluid (CSF) biomarkers enabling identification of frontotemporal dementia (FTD) and its pathologic subtypes are lacking. Methods: Unbiased high-resolution mass spectrometry-based proteomics was applied on CSF of FTD patients with TAR DNA-binding protein 43 (TDP-43, FTD-TDP, n = 12) or tau pathology (FTD-tau, n = 8), and individuals with subjective memory complaints (SMC, n = 10). Validation was performed by applying enzyme-linked immunosorbent assay (ELISA) or enzymatic assays, when available, in a larger cohort (FTLD-TDP, n = 21, FTLD-tau, n = 10, SMC, n = 23) and in Alzheimer's disease (n = 20), dementia with Lewy bodies (DLB, n = 20), and vascular dementia (VaD, n = 18). Results: Of 1914 identified CSF proteins, 56 proteins were differentially regulated (fold change >1.2, P <.05) between the different patient groups: either between the two pathologic subtypes (10 proteins), or between at least one of these FTD subtypes and SMC (47 proteins). We confirmed the differential expression of YKL-40 by ELISA in a partly independent cohort. Furthermore, enzyme activity of catalase was decreased in FTD subtypes compared with SMC. Further validation in a larger cohort showed that the level of YKL-40 was twofold increased in both FTD pathologic subtypes compared with SMC and that the levels in FTLD-tau were higher compared to Alzheimer's dementia (AD), DLB, and VaD patients. Clinical validation furthermore showed that the catalase enzyme activity was decreased in the FTD subtypes compared to SMC, AD and DLB. Discussion: We identified promising CSF biomarkers for both FTD differential diagnosis and pathologic subtyping. YKL-40 and catalase enzyme activity should be validated further in similar pathology defined patient cohorts for their use for FTD diagnosis or treatment development

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen
    corecore