26 research outputs found

    Second central extension in Galilean covariant field theory

    Get PDF
    The second central extension of the planar Galilei group has been alleged to have its origin in the spin variable. This idea is explored here by considering local Galilean covariant field theory for free fields of arbitrary spin. It is shown that such systems generally display only a trivial realization of the second central extension. While it is possible to realize any desired value of the extension parameter by suitable redefinition of the boost operator, such an approach has no necessary connection to the spin of the basic underlying field.Comment: 6 pgs., late

    On the linear forms of the Schrodinger equation

    Full text link
    Generalizing the linearisation procedure used by Dirac and later by L\'evy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrodinger equation

    Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation

    Full text link
    We report a modulational instability (MI) analysis of a mathematical model appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope approximation. Theoretically predicted MI properties are found to be in good agreement with numerical simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria

    Scaling anomaly in cosmic string background

    Full text link
    We show that the classical scale symmetry of a particle moving in cosmic string background is broken upon inequivalent quantization of the classical system, leading to anomaly. The consequence of this anomaly is the formation of single bound state in the coupling interval \gamma\in(-1,1). The inequivalent quantization is characterized by a 1-parameter family of self-adjoint extension parameter \omega. It has been conjectured that the formation of loosely bound state in cosmic string background may lead to the so called anomalous scattering cross section for the particles, which is usually seen in molecular physics.Comment: 4 pages,1 figur

    Dwelling on de Sitter

    Get PDF
    A careful reduction of the three-dimensional gravity to the Liouville description is performed, where all gauge fixing and on-shell conditions come from the definition of asymptotic de Sitter spaces. The roles of both past and future infinities are discussed and the conditions space-time evolution imposes on both Liouville fields are explicited. Space-times which correspond to non-equivalent profiles of the Liouville field at past and future infinities are shown to exist. The qualitative implications of this for any tentative dual theory are presented.Comment: RevTeX 4, 8 pages, v3: Small clarifications on sections III and IV and references added/corrected, v4: typo
    corecore