1,239 research outputs found
Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3
INTRODUCTION:
Involution of the mammary gland is a complex process of controlled apoptosis and tissue remodelling. The aim of the project was to identify genes that are specifically involved in this process.
METHODS:
We used Affymetrix oligonucleotide microarrays to perform a detailed transcript analysis on the mechanism of controlled involution after withdrawal of the pups at day seven of lactation. Some of the results were confirmed by semi-quantitative reverse transcriptase polymerase chain reaction, Western blotting or immunohistochemistry.
RESULTS:
We identified 145 genes that were specifically upregulated during the first 4 days of involution; of these, 49 encoded immunoglobulin genes. A further 12 genes, including those encoding the signal transducer and activator of transcription 3 (STAT3), the lipopolysaccharide receptor (CD14) and lipopolysaccharide-binding protein (LBP), were involved in the acute-phase response, demonstrating that the expression of acute-phase response genes can occur in the mammary gland itself and not only in the liver. Expression of LBP and CD14 was upregulated, at both the RNA and protein level, immediately after pup withdrawal; CD14 was strongly expressed in the luminal epithelial cells. Other genes identified suggested neutrophil activation early in involution, followed by macrophage activation late in the process. Immunohistochemistry and histological staining confirmed the infiltration of the involuting mammary tissue with neutrophils, plasma cells, macrophages and eosinophils.
CONCLUSION:
Oligonucleotide microarrays are a useful tool for identifying genes that are involved in the complex developmental process of mammary gland involution. The genes identified are consistent with an immune cascade, with an early acute-phase response that occurs in the mammary gland itself and resembles a wound healing process
A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure
In this paper, a novel infra-red (IR) sensitive Er3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, SM ~ 3.4 VPa−1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices
Computation of the Heavy-Light Decay Constant using Non-relativistic Lattice QCD
We report results on a lattice calculation of the heavy-light meson decay
constant employing the non-relativistic QCD approach for heavy quark and Wilson
action for light quark. Simulations are carried out at on a
lattice. Signal to noise ratio for the ground state is
significantly improved compared to simulations in the static approximation,
enabling us to extract the decay constant reliably. We compute the heavy-light
decay constant for several values of heavy quark mass and estimate the
magnitude of the deviation from the heavy mass scaling law . For the meson we find MeV, while
an extrapolation to the static limit yields = MeV.Comment: 34 pages in LaTeX including 10 figures using epsf.sty,
uuencoded-gziped-shar format, HUPD-940
Q-switched laser damage of infrared nonlinear materials
Q-switched laser-damage thresholds have been determined for six materials (proustite – Ag3AsS3, pyrargyrite – Ag3SbS3, cinnabar – HgS, silver thiogallate – AgGaS2, tellurium – Te, and gallium arsenide – GaAs) of interest for nonlinear optics in the medium infrared. Four TEM00 mode lasers were employed with outputs at wavelengths of 694 nm, 1.06, 2.098, and 10.6 µm. Damage has been found to be confined to the surface of the crystals and occurs for radiation intensities between 3 and 75 MW/cm2. Particular care is needed in the cutting and polishing of tellurium crystals if a high-damage threshold is to be achieved
Long-range forecasts of UK winter hydrology
Seasonal river flow forecasts are beneficial for planning agricultural activities, river navigation, and for management of reservoirs for public water supply and hydropower generation. In the United Kingdom (UK), skilful seasonal river flow predictions have previously been limited to catchments in lowland (southern and eastern) regions. Here we show that skilful long-range forecasts of winter flows can now be achieved across the whole of the UK. This is due to a remarkable geographical complementarity between the regional geological and meteorological sources of predictability for river flows. Forecast skill derives from the hydrogeological memory of antecedent conditions in southern and eastern parts of the UK and from meteorological predictability in northern and western areas. Specifically, it is the predictions of the atmospheric circulation over the North Atlantic that provides the skill at the seasonal timescale. In addition, significant levels of skill in predicting the frequency of winter high flow events is demonstrated, which has the potential to allow flood adaptation measures to be put in place
Phase transitions in geometrothermodynamics
Using the formalism of geometrothermodynamics, we investigate the geometric
properties of the equilibrium manifold for diverse thermodynamic systems.
Starting from Legendre invariant metrics of the phase manifold, we derive
thermodynamic metrics for the equilibrium manifold whose curvature becomes
singular at those points where phase transitions of first and second order
occur. We conclude that the thermodynamic curvature of the equilibrium
manifold, as defined in geometrothermodynamics, can be used as a measure of
thermodynamic interaction in diverse systems with two and three thermodynamic
degrees of freedom
Assessment of recycled glass and expanded clay in a dual media configuration for drinking water treatment
Granular discharge and clogging for tilted hoppers
We measure the flux of spherical glass beads through a hole as a systematic
function of both tilt angle and hole diameter, for two different size beads.
The discharge increases with hole diameter in accord with the Beverloo relation
for both horizontal and vertical holes, but in the latter case with a larger
small-hole cutoff. For large holes the flux decreases linearly in cosine of the
tilt angle, vanishing smoothly somewhat below the angle of repose. For small
holes it vanishes abruptly at a smaller angle. The conditions for zero flux are
discussed in the context of a {\it clogging phase diagram} of flow state vs
tilt angle and ratio of hole to grain size
An estimate of the flavour singlet contributions to the hyperfine splitting in charmonium
We explore the splitting between flavour singlet and non-singlet mesons in
charmonium. This has implications for the hyperfine splitting in charmonium
2d Stringy Black Holes and Varying Constants
Motivated by the recent interest on models with varying constants and whether
black hole physics can constrain such theories, two-dimensional charged stringy
black holes are considered. We exploit the role of two-dimensional stringy
black holes as toy models for exploring paradoxes which may lead to constrains
on a theory. A two-dimensional charged stringy black hole is investigated in
two different settings. Firstly, the two-dimensional black hole is treated as
an isolated object and secondly, it is contained in a thermal environment. In
both cases, it is shown that the temperature and the entropy of the
two-dimensional charged stringy black hole are decreased when its electric
charge is increased in time. By piecing together our results and previous ones,
we conclude that in the context of black hole thermodynamics one cannot derive
any model independent constraints for the varying constants. Therefore, it
seems that there aren't any varying constant theories that are out of favor
with black hole thermodynamics.Comment: 12 pages, LaTeX, to appear in JHE
- …
