1,630 research outputs found

    Synthesis of a protected 2-ethoxy-3-hydroxyethylfuran and its regioselectivity as a Diels–Alder diene on reaction with 3,5-dimethoxydehydrobenzene

    Get PDF
    As a potential route for the synthesis of naturally occurring benzisochromanequinones, 2-ethoxy-3-(1′-methoxymethoxyethyl)furan 15 was prepared and shown to react regioselectively with in situ generated 3,5-dimethoxydehydrobenzene to afford, after hydrolysis and alkylation, the target naphthalene 1-(6′,8′-dimethoxy-1′-ethoxy-4′- isopropoxy-2′-naphthalenyl)-1-(methoxymethoxy)ethane 27..

    A model for the synthesis of naturally occurring benzisochromenequinones

    Get PDF
    1,3-Dimethylbenzisochromene-5,10-quinone 14 is obtained in good yield when 2-(1′-hydroxyethyl)-3-prop-2″-enyl-1,4-naphthoquinone 13 is treated briefly with bisacetonitriledichloropalladium(II) in solution in dichloromethane at room temperature

    Photon-assisted capacitance–voltage study of organic metal–insulator–semiconductor capacitors

    Get PDF
    AbstractThe results are reported of a detailed investigation into the photoinduced changes that occur in the capacitance–voltage (C–V) response of an organic metal–insulator–semiconductor (MIS) capacitor based on the organic semiconductor poly(3-hexylthiophene), P3HT. During the forward voltage sweep, the device is driven into deep depletion but stabilizes at a voltage-independent minimum capacitance, Cmin, whose value depends on photon energy, light intensity and voltage ramp rate. On reversing the voltage sweep, strong hysteresis is observed owing to a positive shift in the flatband voltage, VFB, of the device. A theoretical quasi-static model is developed in which it is assumed that electrons photogenerated in the semiconductor depletion region escape geminate recombination following the Onsager model. These electrons then drift to the P3HT/insulator interface where they become deeply trapped thus effecting a positive shift in VFB. By choosing appropriate values for the only disposable parameter in the model, an excellent fit is obtained to the experimental Cmin, from which we extract values for the zero-field quantum yield of photoelectrons in P3HT that are of similar magnitude, 10−5 to 10−3, to those previously deduced for π-conjugated polymers from photoconduction measurements. From the observed hysteresis we deduce that the interfacial electron trap density probably exceeds 1016m−2. Evidence is presented suggesting that the ratio of free to trapped electrons at the interface depends on the insulator used for fabricating the device

    Effective scraping in a scraped surface heat exchanger: some fluid flow analysis

    Get PDF
    An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero

    String Pair Creations in D-brane Systems

    Full text link
    We investigate the criterion, on the Born-Infeld background fields, for the open string pair creation to occur in Dpp-(anti-)Dpp-brane systems. Although the pair creation occurs generically in both Dpp-Dpp and Dpp-anti-Dpp systems for the cases which meet the criterion, it is more drastic in Dpp-anti-Dpp-brane systems by some exponential factor depending on the background fields. Various configurations exhibiting pair creations are obtained via duality transformations. These include the spacelike scissors and two D-strings (slanted at different angles) passing through each other. We raise the scissors paradox and suggest a resolution based on the triple junction in IIB setup.Comment: V2. 1+28 pages, 5 figures in JHEP3, minor changes, added reference

    Organic Ring Oscillators with Sub-200 ns Stage Delay Based on a Solution-Processed p-type Semiconductor Blend

    Get PDF
    High-frequency ring oscillators with sub-microsecond stage delay fabricated from spin-coated films of a specially formulated small-molecule/host-polymer blend are reported. Contacts and interconnects are patterned by photolithography with plasma etching used for creating vias and removing excess material to reduce parasitic effects. The characteristics of transistors with 4.6 μm channel length scale linearly with channel width over the range 60�2160 μm. Model device parameters extracted using Silvaco's Universal Organic Thin Film Transistor (UOTFT) Model yield values of hole mobility increasing from 1.9 to 2.6 cm2 Vs�1 as gate voltage increased. Simulated and fabricated Vgs = 0 inverters predict that the technology is capable of fabricating 5-stage ring oscillators operating above 100 kHz. Initial designs operated mainly at frequencies in the range 250�300 kHz, due to smaller parasitic gate overlap capacitances and higher supply voltages than assumed in the simulations. A design incorporating graded inverter sizes operates at frequencies above 400 kHz with the best reaching 529 kHz. The corresponding stage delay of 189 ns is the shortest reported to date for a solution-processed p-type semiconductor and compares favorably with similar circuits based on evaporated small molecules. Significant further improvements are identified which could lead to the fabrication of digital circuits that operate at much higher bit rates than previously reported

    Model-Based Software for Simulating Ultrasonic Pulse/Echo Inspections of Metal Components

    Get PDF
    The use of models to simulate inspections has played a key role in UT NDE R&D efforts. Over the years, a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed at CNDE to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscattered echoes from the microstructure (grain noise) act to mask sonic echoes from internal defects. Such S/N models have been used to address questions of inspection reliability, such as how to optimize the choices of transducer properties and inspection design to insure that critical defects are reliably detected. Under the sponsorship of the National Science Foundation\u27s Industry/University Cooperative Research Center at ISU, an effort was initiated in 2015 to repackage existing research-grade software into user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. This presentation provides an overview of the ongoing modeling effort, with emphasis on recent developments. The software can now treat both normal and oblique-incidence immersion inspections of curved metal components having equiaxed microstructures in which the grain size varies with depth. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required, and is used to deduce the measurement system efficiency function. This can be “invented” by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole (FBH) reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, RMS grain noise amplitudes, and S/N ratios as functions of the depth of the defect within the metal component. At any particular depth, the user can view a simulated A-scan displaying the superimposed defect and grain-noise waveforms. The realistic grain noise signals used in the A-scans are generated from a set of measured “universal” noise signals whose strengths and spectral characteristics are altered to match predicted noise characteristics for the simulation at hand. Examples are presented comparing measured and predicted A-scan signals for FBHs in Nickel-alloy components. We also discuss efforts currently underway to generate a simulated C-scans (including grain noise speckle) corresponding to inspections in which the model transducer is scanned above the defect. As will be demonstrated as part of this poster presentation, the software typically requires only a few seconds to complete a simulation when running on a typical laptop computer

    Advanced Terahertz Data Processing for NDE Applications

    Get PDF
    Recently terahertz technology (THz) has emerged as a very powerful NDE tool for inspecting and characterizing dielectric materials. Due to its exceptional longitudinal and lateral resolutions, time-domain pulsed THz scan is particularly effective for inspecting thin layered dielectric media. This pulsed scanning produces multi-dimensional data for which advanced processing techniques are needed to extract and analyze the ample information within. In this presentation we conduct a comparable study of several renowned data processing techniques to determine their applicability and performance in processing THz data. These data processing techniques include an outlier detection algorithm based on minimum covariance determinant estimator, the popular partial least squares method in the field of chemometrics and a Bayesian classifier also known as probabilistic neural network in the fields of pattern recognition/machine learning. We will present the results on common simulated data as well as interface data obtained from fiber glass composites

    Short distance properties of cascading gauge theories

    Get PDF
    We study the short distance (large momentum) properties of correlation functions of cascading gauge theories by performing a tree-level computation in their dual gravitational background. We prove that these theories are holographically renormalizable; the correlators have only analytic ultraviolet divergences, which may be removed by appropriate local counterterms. We find that n-point correlation functions of properly normalized operators have the expected scaling in the semi-classical gravity (large N) limit: they scale as N_{eff}^{2-n} with N_{eff} proportional to ln(k/Lambda) where k is a typical momentum. Our analysis thus confirms the interpretation of the cascading gauge theories as renormalizable four-dimensional quantum field theories with an effective number of degrees of freedom which logarithmically increases with the energy.Comment: 47 pages, no figure

    Genome-Wide RNAi Screen Identifies Regulators of Cardiomyocyte Necrosis

    Get PDF
    Regulation of cellular death is central to nearly all physiological routines and is dysregulated in virtually all diseases. Cell death occurs by two major processes, necrosis which culminates in a pervasive inflammatory response and apoptosis which is largely immunologically inert. As necrosis has long been considered an accidental, unregulated form of cellular death that occurred in response to a harsh environmental stimulus, it was largely ignored as a clinical target. However, recent elegant studies suggest that certain forms of necrosis can be reprogrammed. However, scant little is known about the molecules and pathways that orchestrate calcium-overload-induced necrosis, a main mediator of ischemia/reperfusion (IR)-induced cardiomyocyte cell death. To rectify this critical gap in our knowledge, we performed a novel genome-wide siRNA screen to identify modulators of calcium-induced necrosis in human muscle cells. Our screen identified multiple molecular circuitries that either enhance or inhibit this process, including lysosomal calcium channel TPCN1, mitophagy mediatorTOMM7, Ran-binding protein RanBP9, Histone deacetylase HDAC2, chemokine CCL11, and the Arp2/3 complex regulator glia maturation factor-γ(GMFG). Notably, a number of druggable enzymes were identified, including the proteasome β5 subunit (encoded by PSMB5 gene), which controls the proteasomal chymotrypsin-like peptidase activity. Such findings open up the possibility for the discovery of pharmacological interventions that could provide therapeutic benefits to patients affected by myriad disorders characterized by excessive (or too little) necrotic cell loss, including but not limited to IR injury in the heart and kidney, chronic neurodegenerative disorders, muscular dystrophies, sepsis, and cancers
    corecore