873 research outputs found

    Organic Ring Oscillators with Sub-200 ns Stage Delay Based on a Solution-Processed p-type Semiconductor Blend

    Get PDF
    High-frequency ring oscillators with sub-microsecond stage delay fabricated from spin-coated films of a specially formulated small-molecule/host-polymer blend are reported. Contacts and interconnects are patterned by photolithography with plasma etching used for creating vias and removing excess material to reduce parasitic effects. The characteristics of transistors with 4.6 μm channel length scale linearly with channel width over the range 60�2160 μm. Model device parameters extracted using Silvaco's Universal Organic Thin Film Transistor (UOTFT) Model yield values of hole mobility increasing from 1.9 to 2.6 cm2 Vs�1 as gate voltage increased. Simulated and fabricated Vgs = 0 inverters predict that the technology is capable of fabricating 5-stage ring oscillators operating above 100 kHz. Initial designs operated mainly at frequencies in the range 250�300 kHz, due to smaller parasitic gate overlap capacitances and higher supply voltages than assumed in the simulations. A design incorporating graded inverter sizes operates at frequencies above 400 kHz with the best reaching 529 kHz. The corresponding stage delay of 189 ns is the shortest reported to date for a solution-processed p-type semiconductor and compares favorably with similar circuits based on evaporated small molecules. Significant further improvements are identified which could lead to the fabrication of digital circuits that operate at much higher bit rates than previously reported

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    An orientifold of adS_5xT^11 with D7-branes, the associated alpha'^2- corrections and their role in the dual N=1 Sp(2N+2M)xSp(2N) gauge theory

    Full text link
    We study the N=1 Sp(2N+2M)xSp(2N) gauge theory on a stack of N physical and M fractional D3-branes in the background of an orientifolded conifold. The gravity dual is a type IIB orientifold of adS_5xT^11 (with certain background fluxes turned on) containing an O7-plane and 8 D7-branes. In the conformal case (M=0), we argue that the alpha'^2-corrections localized on the 8 D7-branes and the O7-plane should give vanishing contributions to the supergravity equations of motion for the bulk fields. In the cascading case (M not equal to 0), we argue that the alpha'^2-terms give rise to corrections which in the dual Sp(2N+2M)xSp(2N) gauge theory can be interpreted as corrections to the anomalous dimensions of the matter fields.Comment: 28 pages, 3 figures, LaTeX; v2: references added; v3: minor change

    Polyakov Loops versus Hadronic States

    Get PDF
    The order parameter for the pure Yang-Mills phase transition is the Polyakov loop which encodes the symmetries of the Z_N center of the SU(N) gauge group. On the other side the physical degrees of freedom of any asymptotically free gauge theory are hadronic states. Using the Yang-Mills trace anomaly and the exact Z_N symmetry we construct a model able to communicate to the hadrons the information carried by the order parameter.Comment: RevTex4 2-col., 6 pages, 2 figures. Typos fixed and added a paragraph in the conclusion

    Induced Universal Properties and Deconfinement

    Full text link
    We propose a general strategy to determine universal properties induced by a nearby phase transition on a non-order parameter field. A general renormalizable Lagrangian is used, which contains the order parameter and a non-order parameter field, and respects all the symmetries present. We investigate the case in which the order parameter field depends only on space coordinates and the case in which this field is also time dependent. We find that the spatial correlators of the non-order parameter field, in both cases, are infrared dominated and can be used to determine properties of the phase transition. We predict a universal behavior for the screening mass of a generic singlet field, and show how to extract relevant information from such a quantity. We also demonstrate that the pole mass of the non-order parameter field is not infrared sensitive. Our results can be applied to any continuous phase transition. As an example we consider the deconfining transition in pure Yang-Mills theory, and show that our findings are supported by lattice data. Our analysis suggests that monitoring the spatial correlators of different hadron species, more specifically the derivatives of these, provides an efficient and sufficient way to experimentally uncover the deconfining phase transition and its features.Comment: Added computational details and improved the text. The results are unchange

    Perturbations on a moving D3-brane and mirage cosmology

    Full text link
    We study the evolution of perturbations on a moving probe D3-brane coupled to a 4-form field in an AdS5_5-Schwarzschild bulk. The unperturbed dynamics are parametrised by a conserved energy EE and lead to Friedmann-Robertson-Walker `mirage' cosmology on the brane with scale factor a(τ)a(\tau). The fluctuations about the unperturbed worldsheet are then described by a scalar field ϕ(τ,x)\phi(\tau,\vec{x}). We derive an equation of motion for ϕ\phi, and find that in certain regimes of aa the effective mass squared is negative. On an expanding BPS brane with E=0 superhorizon modes grow as a4a^4 whilst subhorizon modes are stable. When the brane contracts, all modes grow. We also briefly discuss the case when E>0E>0, BPS anti-branes as well as non-BPS branes. Finally, the perturbed brane embedding gives rise to scalar perturbations in the FRW universe. We show that ϕ\phi is proportional to the gauge invariant Bardeen potentials on the brane.Comment: 26 pages, 5 figures, to appear in Phys.Rev.D, comments and minor corrections adde

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    S-branes and (Anti-)Bubbles in (A)dS Space

    Full text link
    We describe the construction of new locally asymptotically (A)dS geometries with relevance for the AdS/CFT and dS/CFT correspondences. Our approach is to obtain new solutions by analytically continuing black hole solutions. A basic consideration of the method of continuation indicates that these solutions come in three classes: S-branes, bubbles and anti-bubbles. A generalization to spinning or twisted solutions can yield spacetimes with complicated horizon structures. Interestingly enough, several of these spacetimes are nonsingular.Comment: 35 pages, 12 figures. V2: JHEP style, expanded reference

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference

    Partial Deconfinement in Color Superconductivity

    Full text link
    We analyze the fate of the unbroken SU(2) color gauge interactions for 2 light flavors color superconductivity at non zero temperature. Using a simple model we compute the deconfining/confining critical temperature and show that is smaller than the critical temperature for the onset of the superconductive state itself. The breaking of Lorentz invariance, induced already at zero temperature by the quark chemical potential, is shown to heavily affect the value of the critical temperature and all of the relevant features related to the deconfining transition. Modifying the Polyakov loop model to describe the SU(2) immersed in the diquark medium we argue that the deconfinement transition is second order. Having constructed part of the equation of state for the 2 color superconducting phase at low temperatures our results are relevant for the physics of compact objects featuring a two flavor color superconductive state.Comment: 9 pp, 4 eps-figs, version to appear in PR
    corecore