17 research outputs found

    Comparación de distintas estrategias para la predicción de muerte a corto plazo en el paciente anciano infectado

    Get PDF
    Objective. The aim of this study was to determine the utility of a post hoc lactate added to SIRS and qSOFA score to predict 30-day mortality in older non-severely dependent patients attended for infection in the Emergency Department (ED). Methods. We performed an analytical, observational, prospective cohort study including patients of 75 years of age or older, without severe functional dependence, attended for an infectious disease in 69 Spanish ED for 2-day three seasonal periods. Demographic, clinical and analytical data were collected. The primary outcome was 30-day mortality after the index event. Results. We included 739 patients with a mean age of 84.9 (SD 6.0) years; 375 (50.7%) were women. Ninety-one (12.3%) died within 30 days. The AUC was 0.637 (IC 95% 0.587-0.688; p= 2 and 0.698 (IC 95% 0.635- 0.761; p= 2. Comparing receiver operating characteristic (ROC) there was a better accuracy of qSOFA vs SIRS (p=0.041). Both scales improve the prognosis accuracy with lactate inclusion. The AUC was 0.705 (IC95% 0.652-0.758; p<0.001) for SIRS plus lactate and 0.755 (IC95% 0.696-0.814; p<0.001) for qSOFA plus lactate, showing a trend to statistical significance for the second strategy (p=0.0727). Charlson index not added prognosis accuracy to SIRS (p=0.2269) or qSOFA (p=0.2573). Conclusions. Lactate added to SIRS and qSOFA score improve the accuracy of SIRS and qSOFA to predict short-term mortality in older non-severely dependent patients attended for infection. There is not effect in adding Charlson index

    Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review.

    Get PDF
    (1) Background: Hypopharyngeal squamous cell carcinomas usually present with locally advanced disease and a correspondingly poor prognosis. Currently, efforts are being made to improve tumor characterization and provide insightful information for outcome prediction. Radiomics is an emerging area of study that involves the conversion of medical images into mineable data; these data are then used to extract quantitative features based on shape, intensity, texture, and other parameters; (2) Methods: A systematic review of the peer-reviewed literature was conducted; (3) Results: A total of 437 manuscripts were identified. Fifteen manuscripts met the inclusion criteria. The main targets described were the evaluation of textural features to determine tumor-programmed death-ligand 1 expression; a surrogate for microvessel density and heterogeneity of perfusion; patient stratification into groups at high and low risk of progression; prediction of early recurrence, 1-year locoregional failure and survival outcome, including progression-free survival and overall survival, in patients with locally advanced HPSCC; thyroid cartilage invasion, early disease progression, recurrence, induction chemotherapy response, treatment response, and prognosis; and (4) Conclusions: our findings suggest that radiomics represents a potentially useful tool in the diagnostic workup as well as during the treatment and follow-up of patients with HPSCC. Large prospective studies are essential to validate this technology in these patients

    The 4 pi fragment spectrometer FOBOS

    No full text
    The 4 pi fragment spectrometer FOBOS developed for heavy ion research at beam energies of 10 100 AMeV has been commissioned for physical experiments at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Based on the logarithmic detector principle, it is able to register charged fragments from protons up to heavy residual nuclei in a large dynamical range. Position sensitive avalanche counters, axial ionization chambers and CsI TI scintillation detectors are arranged in three concentric detector shells. An array of phoswich detectors is used as a more granular forward detector at narrow polar angles. The modular concept of FOBOS allows for different experimental application in the field of exclusive fragment spectroscopy at medium multiplicities. For illustration, the fragment spectroscopy studies concerning the spontaneous fission process and the fragmentation of hot nuclei by means of the FOBOS set up are considere

    The 4#pi#-fragment-spectrometer FOBOS

    No full text
    The 4#pi# - fragment - spectrometer FOBOS developed for heavy-ion research at beam energies of 10 + 100 AMeV has been commissioned for physical experiments at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna. Based on the logarithmic detector principle, it is able to register charged fragments from protons up to heavy residual nuclei in a large dynamical range. Position-sensitive avalanche counters, axial ionization chambers and CsI(Tl) scintillation detectors are arranged in three concentric detector shells. An array of phoswich detectors is used as a more granular forward detector at narrow polar angles. The modular concept of FOBOS allows for different experimental application in the field of exclusive fragment spectroscopy at medium multiplicities. For illustration the fragment spectroscopy studies concerning the spontaneous fission process and the fragmentation of hot nuclei by means of the FOBOS set-up are considered. (orig.)Available from FIZ Karlsruhe / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
    corecore