9 research outputs found

    Competing Orders in Coupled Luttinger Liquids

    Full text link
    We consider the problem of two coupled Luttinger liquids both at half filling and at low doping levels, to investigate the problem of competing orders in quasi-one-dimensional strongly correlated systems. We use bosonization and renormalization group equations to investigate the phase diagrams, to determine the allowed phases and to establish approximate boundaries among them. Because of the chiral translation and reflection symmetry in the charge mode away from half filling, orders of charge density wave (CDW) and spin-Peierls (SP) diagonal current (DC) and dd-density wave (DDW) form two doublets and thus can be at most quasi-long range ordered. At half-filling, umklapp terms break this symmetry down to a discrete group and thus Ising-type ordered phases appear as a result of spontaneous breaking of the residual symmetries. Quantum disordered Haldane phases are also found, with finite amplitudes of pairing orders and triplet counterparts of CDW, SP, DC and DDW. Relations with recent numerical results and implications to similar problems in two dimensions are discussed.Comment: 16 pages, 5 figures, 4 tables. Revised manuscript; a misprint in Eq. B3 has been corrected. The paper is already in print in PR

    Dynamical 1/N approach to time-dependent currents through quantum dots

    Full text link
    A systematic truncation of the many-body Hilbert space is implemented to study how electrons in a quantum dot attached to conducting leads respond to time-dependent biases. The method, which we call the dynamical 1/N approach, is first tested in the most unfavorable case, the case of spinless fermions (N=1). We recover the expected behavior, including transient ringing of the current in response to an abrupt change of bias. We then apply the approach to the physical case of spinning electrons, N=2, in the Kondo regime for the case of infinite intradot Coulomb repulsion. In agreement with previous calculations based on the non-crossing approximation (NCA), we find current oscillations associated with transitions between Kondo resonances situated at the Fermi levels of each lead. We show that this behavior persists for a more realistic model of semiconducting quantum dots in which the Coulomb repulsion is finite.Comment: 18 pages, 7 eps figures, discussion extended for spinless electrons and typo

    Hypoxic Pulmonary Vasoconstriction in Humans:Tale or Myth

    Get PDF
    Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism

    Starch characterisation and variability in GBSS loci of synthetic hexaploid wheats and their durum and Aegilops tauschii parents

    No full text
    Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat

    Spin transport in the NĂ©el and collinear antiferromagnetic phase of the two dimensional spatial and spin anisotropic Heisenberg model on a square lattice

    No full text
    We analyze and compare the effect of spatial and spin anisotropy on spin conductivity in a two dimensional S=1/2 Heisenberg quantum magnet on a square lattice. We explore the model in both the Neel antiferromagnetic (AF) phase and the collinear antiferromagnetic (CAF) phase. We find that in contrast to the effects of spin anisotropy in the Heisenberg model, spatial anisotropy in the AF phase does not suppress the zero temperature regular part of the spin conductivity in the zero frequency limit - rather it enhances it. We also explore the finite temperature effects on the Drude weight in the AF phase for various spatial and spin anisotropy parameters. We find that the Drude weight goes to zero as the temperature approaches zero. At finite temperatures (within the collision less approximation) enhancing spatial anisotropy increases the Drude weight value and increasing spin anisotropy decreases the Drude weight value. In the CAF phase (within the non-interacting approximation) the zero frequency spin conductivity has a finite value for non-zero values of the spatial anisotropy parameter. In the CAF phase increasing the spatial anisotropy parameter suppresses the regular part of the spin conductivity response at zero frequency. Furthermore, we find that the CAF phase displays a spike in the spin conductivity not seen in the AF phase. Inclusion of the smallest amount of spin anisotropy causes a gap to develop in the spin conductivity response of both the AF and CAF phase. Based on these studies we conclude that materials with spatial anisotropy are better spin conductors than those with spin anisotropy both at zero and finite temperatures. We utilize exchange parameter ratios for real material systems as inputs to the computation of spin conductivity.Comment: 10 pages, 8 figure

    Genomics of quality traits

    No full text
    The quality attributes of cereal grains are valued in the context of a complex food chain that integrates outputs achievable by breeding, production, and processing. New processing technologies, environmental change, and changes in consumer preferences demand that quality attributes of wheat and barley need to be continually modified. The advances in the genomics of quality described in this chapter provide the basis for ensuring that the genetic approaches encompassing the complexities of the gene networks underpinning quality attributes can meet the challenges presented by the rapid changes occurring within the food chain
    corecore