5 research outputs found

    Mode of action of trabectedin in myxoid liposarcomas

    No full text
    To elucidate the mechanisms behind the high sensitivity of myxoid/round cell liposarcoma (MRCL) to trabectedin and the suggested selectivity for specific subtypes, we have developed and characterized three MRCL xenografts, namely ML017, ML015 and ML004 differing for the break point of the fusion gene FUS-CHOP, respectively of type I, II and III. FUS-CHOP binding to the promoters of some target genes such as Pentraxin 3 or Fibronectin 1, assessed by chromatin immunoprecipitation, was strongly reduced in the tumor 24\u2009h after the first or the third weekly dose of trabectedin, indicating that the drug at therapeutic doses causes a detachment of the FUS-CHOP chimera from its target promoters as previously shown in vitro. Moreover, the higher sensitivity of MRCL types I and II appears to be related to a more prolonged block of the transactivating activity of the fusion protein. Doxorubicin did not affect the binding of FUS-CHOP to target promoters. Histologically, the response to trabectedin in ML017 and ML015 was associated with a marked depletion of non-lipogenic tumoral cells and vascular component, as well as lipidic maturation as confirmed by PPAR\u3b32 expression in western Blot. By contrast, in ML004 no major changes either in the cellularity or in the amount of mature were found, and consistently PPAR\u3b32 was null. In conclusion, the data support the view that the selective mechanism of action of trabectedin in MRCL is specific and related to its ability to cause a functional inactivation of the oncogenic chimera with consequent derepression of the adypocytic differentiation

    Macromolecular Antiproliferative Agents Featuring Dicarboxylato-Chelated Platinum

    No full text
    Cancerous diseases, together with cardiac afflictions, account for the predominant causes of death among the adult population of the Western world. The classical platinum drugs, with cisplatin as their parent, have established themselves for years as leading components in the oncologist’s arsenal of antitumor agents. As with most other antineoplastic drugs, however, incisive pharmacological deficiencies, notably excessive systemic toxicity and induction of drug resistance, have severely curtailed their overall efficaciousness. With the objective of overcoming these counterproductive deficiencies, the technique of polymer-drug conjugation, representing an advanced modality of drug delivery, has been developed in recent years to high standards worldwide. In a drug conjugate, water-soluble macromolecular carrier constructs designed in compliance with stringent pharmacological specifications are covalently, yet bioreversibly, interconnected with the bioactive agent. As a macromolecule following a pharmacokinetic pathway different from that of non-polymeric compounds, the conjugate acts as a pro-drug favorably transporting the agent through the various body compartments to, and into, the target cell, where the agent is enzymatically or hydrolytically separated from the carrier for its biological action. In the authors’ laboratories the conjugation strategy has been adopted as the primary tool for drug efficacy enhancement. The present paper describes a special type of platinum complex carrier-bound via dicarboxymetal chelation, synthesized from carboxyl-functionalized polyamide-type carriers by platination with trans-1,2-diaminocyclohexanediaquaplatinum(II) dinitrate. In a series of in vitro tests antiproliferative activities have been determined against several human cancer cell lines. Whereas no improvements are observed in tests against a colorectal cancer, outstanding findings of the screening program include a 10- to 100-fold increase in cell-killing performance of the conjugates relative to the (non-polymeric) cisplatin standard against the HeLa adenocarcinoma, and distinctly reduced resistance factors (again, relative to cisplatin) in tests against the A2780 and A2780-cis pair of ovarian cell lines. These findings augur well for future developments of this class of platinum drugs

    Insulin action gene regulation

    No full text
    corecore