1,136 research outputs found
Metastates in mean-field models with random external fields generated by Markov chains
We extend the construction by Kuelske and Iacobelli of metastates in
finite-state mean-field models in independent disorder to situations where the
local disorder terms are are a sample of an external ergodic Markov chain in
equilibrium. We show that for non-degenerate Markov chains, the structure of
the theorems is analogous to the case of i.i.d. variables when the limiting
weights in the metastate are expressed with the aid of a CLT for the occupation
time measure of the chain. As a new phenomenon we also show in a Potts example
that, for a degenerate non-reversible chain this CLT approximation is not
enough and the metastate can have less symmetry than the symmetry of the
interaction and a Gaussian approximation of disorder fluctuations would
suggest.Comment: 20 pages, 2 figure
An ultrametric state space with a dense discrete overlap distribution: Paperfolding sequences
We compute the Parisi overlap distribution for paperfolding sequences. It
turns out to be discrete, and to live on the dyadic rationals. Hence it is a
pure point measure whose support is the full interval [-1; +1]. The space of
paperfolding sequences has an ultrametric structure. Our example provides an
illustration of some properties which were suggested to occur for pure states
in spin glass models
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
Electroweak Supersymmetry around the Electroweak Scale
Inspired by the phenomenological constraints, LHC supersymmetry and Higgs
searches, dark matter search as well as string model building, we propose the
electroweak supersymmetry around the electroweak scale: the squarks and/or
gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are
within one TeV. The Higgsinos can be either heavy or light. We consider bino as
the dominant component of dark matter candidate, and the observed dark matter
relic density is achieved via the neutralino-stau coannihilations. Considering
the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that the
electroweak supersymmetry can be realized, and the gauge coupling unification
can be preserved. With two Scenarios, we study the viable parameter spaces that
satisfy all the current phenomenological constraints, and we present the
concrete benchmark points. Furthermore, we comment on the fine-tuning problem
and LHC searches.Comment: RevTex4, 28 pages, 8 figures, 8 tables, version to appear in EPJ
The General Solution of Bianchi Type Vacuum Cosmology
The theory of symmetries of systems of coupled, ordinary differential
equations (ODE) is used to develop a concise algorithm in order to obtain the
entire space of solutions to vacuum Bianchi Einstein Field Equations (EFEs).
The symmetries used are the well known automorphisms of the Lie algebra for the
corresponding isometry group of each Bianchi Type, as well as the scaling and
the time re-parametrization symmetry. The application of the method to Type
VII_h results in (a) obtaining the general solution of Type VII_0 with the aid
of the third Painlev\'{e} transcendental (b) obtaining the general solution of
Type with the aid of the sixth Painlev\'{e} transcendental (c) the
recovery of all known solutions (six in total) without a prior assumption of
any extra symmetry (d) The discovery of a new solution (the line element given
in closed form) with a G_3 isometry group acting on T_3, i.e. on time-like
hyper-surfaces, along with the emergence of the line element describing the
flat vacuum Type VII_0 Bianchi Cosmology.Comment: latex2e source file, 27 pages, 2 tables, no fiure
Phase Transition in Ferromagnetic Ising Models with Non-Uniform External Magnetic Fields
In this article we study the phase transition phenomenon for the Ising model
under the action of a non-uniform external magnetic field. We show that the
Ising model on the hypercubic lattice with a summable magnetic field has a
first-order phase transition and, for any positive (resp. negative) and bounded
magnetic field, the model does not present the phase transition phenomenon
whenever , where is the external
magnetic field.Comment: 11 pages. Published in Journal of Statistical Physics - 201
Special Geometry of Euclidean Supersymmetry I: Vector Multiplets
We construct the general action for Abelian vector multiplets in rigid
4-dimensional Euclidean (instead of Minkowskian) N=2 supersymmetry, i.e., over
space-times with a positive definite instead of a Lorentzian metric. The target
manifolds for the scalar fields turn out to be para-complex manifolds endowed
with a particular kind of special geometry, which we call affine special
para-Kahler geometry. We give a precise definition and develop the mathematical
theory of such manifolds. The relation to the affine special Kahler manifolds
appearing in Minkowskian N=2 supersymmetry is discussed. Starting from the
general 5-dimensional vector multiplet action we consider dimensional reduction
over time and space in parallel, providing a dictionary between the resulting
Euclidean and Minkowskian theories. Then we reanalyze supersymmetry in four
dimensions and find that any (para-)holomorphic prepotential defines a
supersymmetric Lagrangian, provided that we add a specific four-fermion term,
which cannot be obtained by dimensional reduction. We show that the Euclidean
action and supersymmetry transformations, when written in terms of
para-holomorphic coordinates, take exactly the same form as their Minkowskian
counterparts. The appearance of a para-complex and complex structure in the
Euclidean and Minkowskian theory, respectively, is traced back to properties of
the underlying R-symmetry groups. Finally, we indicate how our work will be
extended to other types of multiplets and to supergravity in the future and
explain the relevance of this project for the study of instantons, solitons and
cosmological solutions in supergravity and M-theory.Comment: 74 page
Light propagation in statistically homogeneous and isotropic universes with general matter content
We derive the relationship of the redshift and the angular diameter distance
to the average expansion rate for universes which are statistically homogeneous
and isotropic and where the distribution evolves slowly, but which have
otherwise arbitrary geometry and matter content. The relevant average expansion
rate is selected by the observable redshift and the assumed symmetry properties
of the spacetime. We show why light deflection and shear remain small. We write
down the evolution equations for the average expansion rate and discuss the
validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular
diameter distance and two typos. No change in result
Resummation of Nonalternating Divergent Perturbative Expansions
A method for the resummation of nonalternating divergent perturbation series
is described. The procedure constitutes a generalization of the Borel-Pad\'{e}
method. Of crucial importance is a special integration contour in the complex
plane. Nonperturbative imaginary contributions can be inferred from the purely
real perturbative coefficients. A connection is drawn from the quantum field
theoretic problem of resummation to divergent perturbative expansions in other
areas of physics.Comment: 5 pages, LaTeX, 2 tables, 1 figure; discussion of the Carleman
criterion added; version to appear in Phys. Rev.
Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories
In this paper we obtain the space-time generated by a time-like
current-carrying superconducting screwed cosmic string(TCSCS). This
gravitational field is obtained in a modified scalar-tensor theory in the sense
that torsion is taken into account. We show that this solution is comptible
with a torsion field generated by the scalar field . The analysis of
gravitational effects of a TCSCS shows up that the torsion effects that appear
in the physical frame of Jordan-Fierz can be described in a geometric form
given by contorsion term plus a symmetric part which contains the scalar
gradient. As an important application of this solution, we consider the linear
perturbation method developed by Zel'dovich, investigate the accretion of cold
dark matter due to the formation of wakes when a TCSCS moves with speed and
discuss the role played by torsion. Our results are compared with those
obtained for cosmic strings in the framework of scalar-tensor theories without
taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV-
Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to
appear in Phys. Rev.
- …
