37 research outputs found

    Effects of aneuploidy on cellular physiology and cell division in haploid yeast

    No full text
    Aneuploidy is a condition frequently found in tumor cells, but its effect on cellular physiology is not known. We have characterized one aspect of aneuploidy: the gain of extra chromosomes. We created a collection of haploid yeast strains that each bear an extra copy of one or more of almost all of the yeast chromosomes. Their characterization revealed that aneuploid strains share a number of phenotypes, including defects in cell cycle progression, increased glucose uptake, and increased sensitivity to conditions interfering with protein synthesis and protein folding. These phenotypes were observed only in strains carrying additional yeast genes, which indicates that they reflect the consequences of additional protein production as well as the resulting imbalances in cellular protein composition. We conclude that aneuploidy causes not only a proliferative disadvantage but also a set of phenotypes that is independent of the identity of the individual extra chromosomes

    Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level

    No full text
    The molecular events that contribute to, and result from, the in vivo binding of transcription factors to their cognate DNA sequence motifs in mammalian genomes are poorly understood. We demonstrate that variations within the DNA sequence motifs that bind the transcriptional repressor REST (NRSF) encode in vivo DNA binding affinity hierarchies that contribute to regulatory function during lineage-specific and developmental programs in fundamental ways. First, canonical sequence motifs for REST facilitate strong REST binding and control functional classes of REST targets that are common to all cell types, whilst atypical motifs participate in weak interactions and control those targets, which are cell- or tissue-specific. Second, variations in REST binding relate directly to variations in expression and chromatin configurations of REST's target genes. Third, REST clearance from its binding sites is also associated with variations in the RE1 motif. Finally, and most surprisingly, weak REST binding sites reside in DNA sequences that show the highest levels of constraint through evolution, thus facilitating their roles in maintaining tissue-specific functions. These relationships have never been reported in mammalian systems for any transcription factor

    Observations on monosex culture of redclaw crayfish Cherax quadricarinatus von Martens (Decapoda: Parastacidae) in earthen ponds

    No full text
    Manual sexing of redclaw crayfish Cherar quadricurinatus was undertaken to evaluate the feasibility of monosex culture and to establish growth and yield characteristics of single sex populations. Although the all-male population exhibited greater mean weight after 10 mo of growout, all-female and mixed sex populations achieved greater total yields due to significant juvenile recruitment. Commercial cultivation of all-male populations would be advantageous as in-pond reproduction is greatly abated, growth is superior and marketable yield is higher. Apparent sexual lability of juveniles combined with the laborious nature of manual sexing may render manual sexing unsuitable for commercial applications

    Diets of savanna ungulates from stable carbon isotope composition of faeces

    Full text link
    Hypotheses to explain diversity among African ungulates focus largely on niche separation along a browser/grazer continuum. However, a number of studies advocate that the browser/grazer distinction insufficiently describes the full extent of dietary variation that occurs within and between taxa. Disparate classification schemes exist because of a lack of uniform and reliable data for many taxa, and failure to incorporate spatio-temporal variations into broader assessments of diet. In this study, we tested predictions for diet and dietary niche separation of African savanna ungulates using stable carbon isotope evidence from faeces for proportions of C3 (browse) to C4 (grass) intake among 19 species from the Kruger National Park, South Africa. Dietary predictions from the literature are confirmed in the case of browsers (black rhinoceros Diceros bicornis, giraffe Giraffa camelopardalis, bushbuck Tragelaphus scriptus, kudu Tragelaphus strepsiceros), mixed-feeders (impala Aepyceros melampus, nyala Tragelaphus angasii), and most grazers (white rhinoceros Ceratotherium simum, Burchellā€™s zebra Equus burchellii, warthog Phacochoerus africanus, hippopotamus Hippopotamus amphibius, blue wildebeest Connochaetes taurinus, tsessebe Damaliscus lunatus, waterbuck Kobus ellipsiprymnus). In contrast, several species showed results differing from most expectations derived from the available literature, including eland Taurotragus oryx, steenbok Raphicerus campestris, grey duiker Sylvicapra grimmia, buffalo Syncerus caffer, roan antelope Hippotragus equinus and sable antelope Hippotragus niger. Many of these discrepancies can be accounted for by seasonal and/or regional dietary differences. Cluster analysis based on a data matrix that incorporates the extent of spatio-temporal dietary variation among Kruger Park ungulates reveals several distinct categories of feeding preferences that extend beyond a two-edged browser/grazer dichotomy, such as mixed-feeders with a preference for either forage class, and spatial/seasonal shifts between uniform and mixed-feeding styles among variable browsers (e.g. grey duiker) and variable grazers (e.g. buffalo). These results highlight the need for approaches that are sensitive to spatio-temporal variations and the continuity of diet
    corecore