2,064 research outputs found
Anisotropic Aerogels for Studying Superfluid He
It may be possible to stabilize new superfluid phases of He with
anisotropic silica aerogels. We discuss two methods that introduce anisotropy
in the aerogel on length scales relevant to superfluid He. First,
anisotropy can be induced with uniaxial strain. A second method generates
anisotropy during the growth and drying stages. We have grown cylindrical
98% aerogels with anisotropy indicated by preferential radial shrinkage
after supercritical drying and find that this shrinkage correlates with small
angle x-ray scattering (SAXS). The growth-induced anisotropy was found to be
out of phase relative to that induced by strain. This has
implications for the possible stabilization of superfluid phases with specific
symmetry.Comment: 6 pages, 4 figures, submitted to Quantum Fluids and Solids (QFS)
conference 200
Gravitational-wave astronomy: the high-frequency window
This contribution is divided in two parts. The first part provides a
text-book level introduction to gravitational radiation. The key concepts
required for a discussion of gravitational-wave physics are introduced. In
particular, the quadrupole formula is applied to the anticipated
``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300:
inspiralling compact binaries. The second part provides a brief review of high
frequency gravitational waves. In the frequency range above (say) 100Hz,
gravitational collapse, rotational instabilities and oscillations of the
remnant compact objects are potentially important sources of gravitational
waves. Significant and unique information concerning the various stages of
collapse, the evolution of protoneutron stars and the details of the
supranuclear equation of state of such objects can be drawn from careful study
of the gravitational-wave signal. As the amount of exciting physics one may be
able to study via the detections of gravitational waves from these sources is
truly inspiring, there is strong motivation for the development of future
generations of ground based detectors sensitive in the range from hundreds of
Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer
School on the Early Universe, Syros, Greece, September 200
On the dual structure of the auditory brainstem response in dogs
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
Structure of the icosahedral Ti-Zr-Ni quasicrystal
The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined
by invoking similarities to periodic crystalline phases, diffraction data and
the results from ab initio calculations. The structure is modeled by
decorations of the canonical cell tiling geometry. The initial decoration model
is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1
approximant structure of the quasicrystal. The decoration model is optimized
using a new method of structural analysis combining a least-squares refinement
of diffraction data with results from ab initio calculations. The resulting
structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration
rule and structural details are discussed.Comment: 12 pages, 8 figure
A Supersymmetric SO(10) Model with Inflation and Cosmic Strings
We have built a supersymmetric SO(10) model consistent with cosmological
observations. The model gives rise to a false vacuum hybrid inflationary
scenario which solves the monopole problem. We argue that this type of
inflationary scenario is generic in supersymmetric SO(10) model, and arises
naturally from the theory. Neither any external field nor any external symmetry
has to be added. It can just be a consequence of the theory. In our specific
model, at the end of inflation, cosmic strings form. The properties of the
strings are presented. The cosmic background radiation anisotropies induced by
the inflationary perturbations and the cosmic strings are estimated. The model
produces a stable lightest superparticle and a very light left-handed neutrino
which may serve as the cold and hot dark matter. The properties of a mixed
cosmic string-inflationary large scale structure formation scenario are
discussed.Comment: 32 pages, uses RevTex. Misprint in a referenc
Superradiation from Crystals of High-Spin Molecular Nanomagnets
Phenomenological theory of superradiation from crystals of high-spin
molecules is suggested. We show that radiation friction can cause a
superradiation pulse and investigate the role of magnetic anisotropy, external
magnetic field and dipole-dipole interactions. Depending on the contribution of
all these factors at low temperature, several regimes of magnetization of
crystal sample are described. Very fast switch of magnetization's direction for
some sets of parameters is predicted.Comment: 10 pages, 3 figure
Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates
Recent analyses of nuclear decay data show evidence of variations suggestive
of a solar influence. Analyses of datasets acquired at the Brookhaven National
Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both
show evidence of an annual periodicity and of periodicities with sidereal
frequencies in the neighborhood of 12.25 year^{-1} (at a significance level
that we have estimated to be 10^{-17}). It is notable that this implied
rotation rate is lower than that attributed to the solar radiative zone,
suggestive of a slowly rotating solar core. This leads us to hypothesize that
there may be an "inner tachocline" separating the core from the radiative zone,
analogous to the "outer tachocline" that separates the radiative zone from the
convection zone. The Rieger periodicity (which has a period of about 154 days,
corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode
oscillation with spherical-harmonic indices l=3, m=1, located in the outer
tachocline. This suggests that we may test the hypothesis of a solar influence
on nuclear decay rates by searching BNL and PTB data for evidence of a
"Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The
appropriate search band for such an oscillation is estimated to be 2.00-2.28
year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11
year^{-1}. We estimate that the probability of obtaining these results by
chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected
reference, and a corrected typ
Constraints on diffuse neutrino background from primordial black holes
We calculated the energy spectra and the fluxes of electron neutrino emitted
in the process of evaporation of primordial black holes (PBHs) in the early
universe. It was assumed that PBHs are formed by a blue power-law spectrum of
primordial density fluctuations. We obtained the bounds on the spectral index
of density fluctuations assuming validity of the standard picture of
gravitational collapse and using the available data of several experiments with
atmospheric and solar neutrinos. The comparison of our results with the
previous constraints (which had been obtained using diffuse photon background
data) shows that such bounds are quite sensitive to an assumed form of the
initial PBH mass function.Comment: 18 pages,(with 7 figures
Lepton Flavour Violation in a Class of Lopsided SO(10) Models
A class of predictive SO(10) grand unified theories with highly asymmetric
mass matrices, known as lopsided textures, has been developed to accommodate
the observed mixing in the neutrino sector. The model class effectively
determines the rate for charged lepton flavour violation, and in particular the
branching ratio for , assuming that the supersymmetric GUT
breaks directly to the constrained minimal supersymmetric standard model
(CMSSM). We find that in light of the combined constraints on the CMSSM
parameters from direct searches and from the WMAP satellite observations, the
resulting predicted rate for in this model class can be
within the current experimental bounds for low , but that the next
generation of experiments would effectively rule out this
model class if LFV is not detected.Comment: 23 page
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
- …
