4 research outputs found

    Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

    Full text link
    We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81 (11), 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices calculated using our method fall within 1-3% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional \zeta 's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.Comment: 10 pages, 8 figure

    Implementation of linear-scaling plane wave density functional theory on parallel computers

    No full text
    We describe the algorithms we have developed for linear-scaling plane wave density functional calculations on parallel computers as implemented in the onetep program. We outline how onetep achieves plane wave accuracy with a computational cost which increases only linearly with the number of atoms by optimising directly the single-particle density matrix expressed in a psinc basis set. We describe in detail the novel algorithms we have developed for computing with the psinc basis set the quantities needed in the evaluation and optimisation of the total energy within our approach. For our parallel computations we use the general Message Passing Interface (MPI) library of subroutines to exchange data between processors. Accordingly, we have developed efficient schemes for distributing data and computational load to processors in a balanced manner. We describe these schemes in detail and in relation to our algorithms for computations with a psinc basis. Results of tests on different materials show that onetep is an efficient parallel code that should be able to take advantage of a wide range of parallel computer architectures
    corecore