15 research outputs found

    The epidemiology of autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASDs) are complex, lifelong, neurodevelopmental conditions of largely unknown cause. They are much more common than previously believed, second in frequency only to mental retardation among the serious developmental disorders. Although a heritable component has been demonstrated in ASD etiology, putative risk genes have yet to be identified. Environmental risk factors may also play a role, perhaps via complex gene-environment interactions, but no specific exposures with significant population effects are known. A number of endogenous biomarkers associated with autism risk have been investigated, and these may help identify significant biologic pathways that, in turn, will aid in the discovery of specific genes and exposures. Future epidemiologic research should focus on expanding population-based descriptive data on ASDs, exploring candidate risk factors in large well-designed studies incorporating both genetic and environmental exposure data and addressing possible etiologic heterogeneity in studies that can stratify case groups and consider alternate endophenotypes

    Gastrointestinal Symptoms in 2- to 5-Year-Old Children in the Study to Explore Early Development

    Get PDF
    Gastrointestinal symptoms (GIS) are commonly reported in children with autism spectrum disorder (ASD). This multi-site study evaluated the prevalence of GIS in preschool-aged children with ASD/(n = 672), with other developmental delays (DD)/(n = 938), and children in the general population (POP)/(n = 851). After adjusting for covariates, children in the ASD group were over 3 times more likely to have parent-reported GIS than the POP group, and almost 2 times more likely than the DD group. Children with GIS from all groups had more behavioral and sleep problems. Within the ASD group, children with developmental regression had more GIS than those without; however, there were no differences in autism severity scores between children with and without GIS. These findings have implications for clinical management

    Project TENDR: Targeting environmental neuro-developmental risks. the TENDR consensus statement

    Get PDF
    Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential

    Design and schematic structure of the fMRI paradigm (The subject of the photograph has given written informed consent, as outlined in the PLOS consent form, to publication of his photograph).

    No full text
    <div><p>a. Ultimatum game: Subjects played against six different opponents (two male human players, two female human players and two computer players), who offered an amount of money varying between zero € and five €. Nevertheless, subjects had the possibility to accept or to reject the offered amount of money by pressing a button. Finally, the subjects were informed by a visual feedback about the accepted or rejected amount of money.</p> <p>b. Dictator game: In the second run of the experiment, subjects played against the previously introduced six opponents. In contrast to the ultimatum game presented in the first run, subjects had now the possibility to share the money according to their needs and beliefs. For this reason, our subjects were in the position to punish or to reward previously unfair or fair opponents. Finally, subjects were informed by a visual feedback about their gain in this trial and the amount of money assigned to the opponent.</p> <p>All trials were separated by a 4.0-5.0s intertrial interval (ITI). In addition, eight separate baseline events varying between 4.0 and 5.5 seconds were presented per run.</p></div
    corecore