19 research outputs found

    Model-Based Coverage-Driven Test Suite Generation for Software Product Lines

    No full text

    A Technique for Agile and Automatic Interaction Testing for Product Lines

    No full text
    Part 2: Testing in PracticeInternational audienceProduct line developers must ensure that existing and new features work in all products. Adding to or changing a product line might break some of its features. In this paper, we present a technique for automatic and agile interaction testing for product lines. The technique enables developers to know if features work together with other features in a product line, and it blends well into a process of continuous integration. The technique is evaluated with two industrial applications, testing a product line of safety devices and the Eclipse IDEs. The first case shows how existing test suites are applied to the products of a 2-wise covering array to identify two interaction faults. The second case shows how over 400,000 test executions are performed on the products of a 2-wise covering array using over 40,000 existing automatic tests to identify potential interactions faults

    Investigation of Two Immiscible Liquids Wetting at Elevated Temperature: Interaction Between Liquid FeMn Alloy and Liquid Slag

    Get PDF
    The goal of the current work is to develop a methodology to study the wetting behaviour of two immiscible liquids at high temperatures, and to investigate the parameters which influence the wetting properties. The wetting behaviour between synthetic FeMn alloy and synthetic slag has been investigated using the sessile drop technique. Two experimental procedures were implemented under both Ar and CO atmospheres: (a) FeMn alloy and slag placed next to each other on a graphite substrate; and (b) one droplet dropped on top of the other. FactSage is applied to calculate reactions and their equilibrium. The current work presents and demonstrates the suggested methodologies. The results indicate that the wetting between slag and FeMn alloy is relatively stable at temperatures up to 100 K above their melting points, regardless of the droplet size and atmosphere. MnO reduction is accelerated at higher temperature, especially in CO, thus increasing the wetting between FeMn alloy and slag, eventually fusing together. At even higher temperature, slag separates from FeMn alloy due to changing chemical composition during non-equilibrium MnO reduction

    Intraprocedural Dataflow Analysis for Software Product Lines

    No full text
    Software product lines (SPLs) developed using annotative approaches such as conditional compilation come with an inherent risk of constructing erroneous products. For this reason, it is essential to be able to analyze such SPLs. However, as dataflow analysis techniques are not able to deal with SPLs, developers must generate and analyze all valid products individually, which is expensive for non-trivial SPLs. In this paper, we demonstrate how to take any standard intraprocedural dataflow analysis and automatically turn it into a feature-sensitive dataflow analysis in five different ways where the last is a combination of the other four. All analyses are capable of analyzing all valid products of an SPL without having to generate all of them explicitly. We have implemented all analyses using SOOT’s intraprocedural dataflow analysis framework and experimentally evaluated four of them according to their performance and memory characteristics on five qualitatively different SPLs. On our benchmarks, the combined analysis strategy is up to almost eight times faster than the brute-force approach
    corecore