10 research outputs found

    Cross-talk between tight and anchoring junctions-lesson from the testis

    No full text
    Spermatogenesis takes place in the seminiferous tubules in adult testes such as rats, in which developing germ cells must traverse the seminiferous epithelium while spermatogonia (2n, diploid) undergo mitotic and meiotic divisions, and differentiate into elongated spermatids (1n, haploid). It is conceivable that this event involves extensive junction restructuring particularly at the blood-testis barrier (BTB, a structure that segregates the seminiferous epithelium into the basal and the adluminal compartments) that occurs at stages VII-VIII of the seminiferous epithelial cycle. As such, cross-talk between tight (TJ) and anchoring junctions [e.g., basal ectoplasmic specialization (basal ES), adherens junction (AJ), desmosome-like junction (DJ)] at the BTB must occur to coordinate the transient opening of the BTB to facilitate preleptotene spermatocyte migration. Interestingly, while there are extensively restructuring at the BTB during the epithelial cycle, the immunological barrier function of the BTB must be maintained without disruption even transiently. Recent studies using the androgen suppression and Adjudin models have shown that anchoring junction restructuring that leads to germ cell loss from the seminiferous epithelium also promotes the production of AJ (e.g., basal ES) proteins (such as N-cadherins, catenins) at the BTB site. We postulate the testis is using a similar mechanism during spermatogenesis at stage VIII of the epithelial cycle that these induced basal ES proteins, likely form a "patch" surrounding the BTB, transiently maintain the BTB integrity while TJ is "opened", such as induced by TGF-b3 or TNFa, to facilitate preleptotene spermatocyte migration. However, in other stages of the epithelial cycle other than VII and VIII when the BTB remains "closed" (for ∼10 days), anchoring junctions (e.g., AJ, DJ, and apical ES) restructuring continues to facilitate germ cell movement. Interestingly, the mechanism(s) that governs this communication between TJ and anchoring junction (e.g., basal ES and AJ) in the testis has remained obscure until recently. Herein, we provide a critical review based on the recently available data regarding the cross-talk between TJ and anchoring junction to allow simultaneous maintenance of the BTB and germ cell movement across the seminiferous epithelium. © 2008 Landes Bioscience and Springer Science+Business Media.link_to_subscribed_fulltex

    Multistage Magnetic and Electrophoretic Extraction of Cells, Particles and Macromolecules

    No full text

    Nutrients, Bioactive Compounds and Bioactivity: The Health Benefits of Sweet Cherries (Prunus avium L.)

    No full text
    Background: Sweet cherries are one of the most appreciated fruits worldwide as well as one of the great sources of several active substances, as phytochemical compounds (carotenoids, serotonin, melatonin and phenolic compounds) as well as in nutritive compounds (sugars and organic acids). Accumulating research demonstrate that their supplementation in our daily diet can contradict oxidative stress, mitigating or even attenuating chronic diseases, as cancerous processes, antiinflammatory- related disorders, diabetes, and neurological and cardiovascular pathologies. Therefore, the aims of this review are to present an overview on the effects of sweet cherries as health promotors, giving emphasis to the health benefits of their bioactive compounds, particularly their antimicrobial, antioxidant, antidiabetic, anticancer, anti-neurodegeneration, anti-inflammatory and cardiovascular effects. Methods: Research and online content about sweet cherry fruits is reviewed. The information available has been read several times to avoid inconsistencies. In addition, according what we read, original figures were done and added to facilitate understanding and to enrich the paper. Results: In this review, a total of 202 original reports were used. In respect to health benefits, it is possible to confirm by several studies that, in fact, the consumption of sweet cherries has positive impacts in human health, owing to their wealthy and vast constitution, particularly in phenolic compounds, vitamins and carotenoids whose health properties were already documented. Conclusion: The findings of this review support the evidence that sweet cherries can be applied in pharmaceutical and food formulations, since they are able to diminish free radical species and proinflammatory markers, preventing and/ or ameliorating oxidative-stress disorders

    General methods of steroid analysis

    No full text

    Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses

    No full text
    corecore